UNIVERSITY OF MYSORE Department of Studies in Statistics

Manasagangotri, Mysore 570006

PROCEEDINGS of the meeting of the (composite) Board of Studies in Statistics held on November 23, 2013 at 11AM at the Office of the Chairman, Department of Studies in Statistics, University of Mysore, Manasagangotri, Mysore 570006.

Members present:

- 1. Prof. V.R.Padmawar, Stat-Math unit, Indian Statistical Institute, Bangalore 560 059.
- 2. Prof. K.S. Mallesh, Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570006.
- 3. Prof. D.D.Somashekara, Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570006.
- 4. Mr. T.S.Venugopal, Associate Professor, Department of Statistics, Maharani's Science College for Women, Mysore 570001.
- 5. Mr. B.K.Shivanna, Assistant Professor, Department of Statistics, Maharani's Science College for Women, Mysore 570001.
- 6. Dr. G.Divanji, Associate Professor, Department of Studies in Statistics, University of Mysore, Manasagangotri, Mysore 570006.
- 7. Dr. B.S.Biradar, Associate Professor and Chairman of Department of Studies in Statistics, University of Mysore, Manasagangotri, Mysore 570006.
- 8. Dr. S.Ravi, Professor and Chairman of BoS in Statistics, Department of Studies in Statistics, University of Mysore, Manasagangotri, Mysore 570006.

Members who could not be present:

1. Prof. N.Balakrishna, Department of Statistics, Cochin University of Science and Technology, CUSAT, Kochi, Kerala.

The Chairman welcomed the new members of the Board (composite) of Studies in Statistics and placed on record the appreciations of the Board for the work done by the earlier members of the Board. The Chairman also told the members that Professor N.Balakrishna has excused himself as he had other commitments.

Agenda 1: Confirmation of Proceedings of the last Board of Statistics meeting held on 28.11.2012.

Resolution: The Chairman read the Proceedings of the last Board of Studies meeting held on 28.11.2012 and the members ratified the same.

Agenda 2: Review of previous examination question papers.

The Chairman placed before the members the question papers of the three components C_1, C_2 and C_3 of assessments held during the year 2013 and asked the members to review the same.

Resolution: The members reviewed the question papers and suggested to continue to maintain minimum standards while setting question papers. The members also appreciated the Department faculty for reviewing the questions papers of the C_1 and C_2 component assessments before commencement of these assessments.

Agenda 3: Preparation of panel of examiners.

Resolution: The Board prepared panel of examiners for the B.Sc. and M.Sc. degree examinations and for Entrance Test and Course Work examinations for Ph.D. in Statistics to be held during the year 2013-14 and 2014-15. Further, the Board authorized the Chairman to send the panels to the Registrar (Evaluation).

Agenda 4: Desired changes, if any, in the CBCS-CAGP scheme for M.Sc.

One of the members Dr. Biradar proposed some changes in the existing syllabus of Inference II paper and another member Sri. Venugopal proposed some changes in the syllabus of Statistical Computing paper and also the LTP pattern of the paper from the existing L=3, T=0, P=1 to L=0, T=0, P=4. Since Statistical Computing is a paper where students learn to solve statistical problems using computing and learn to write programs for statistical problems, these changes are necessary. After discussing, these two proposals the board resolved as follows.

Resolution: The Board approved the proposed changes in syllabus of Inference – II paper and the proposed changes in the LTP pattern and the syllabus of Statistical Computing paper which are given as Appendix below.

Agenda 5: Desired changes in Syllabi, Examination pattern, Regulations of existing B.Sc. / M.Sc. Courses.

None.

Agenda 6: New courses, if any, to be started during the academic year 2014-15. None.

Any other matter with the permission of the Chairman. None.

The Chairman thanked the members for their valuable suggestions and comments.

<u>Appendix</u>

1. Proposed changes in Inference II paper					
Exisiting syllabus	Proposed syllabus	Remarks /			
Hard Core / Compulsory Paper:	Hard Core / Compulsory Paper:	Justificatio			
(LTP=400)	(LTP=400)	ns			
Paper XII: Inference – II (4 Credits –	Paper XII: Inference – II (4				
4 hours of Theory teaching per	Credits – 4 hours of Theory	No change			
week)	teaching per week)	in LTP			
Unit 1: Consistency and asymptotic		pattern			
normality (CAN) of real and vector	Unit 1: Consistency and asymptotic	No change			
parameters. Invariance of consistency	narameters Invariance of	in Unit 1			
under continuous transformation.	consistency under continuous				
Invariance of CAN estimators under	transformation. Invariance of CAN				
differentiable transformations,	estimators under differentiable				
generation of CAN estimators using	transformations, generation of CAN				
Unit 2: Method of moments method of	estimators using central limit				
maximum likelihood. Special cases	theorem.	No change			
such as exponential class of densities	of maximum likelihood. Special	in Unit 2			
and multinomial distribution, Cramer-	cases such as exponential class of				
Huzurbazar theorem, method of	densities and multinomial				
scoring.	distribution, Cramer-Huzurbazar				
Likelihood ratio tests asymptotic	theorem, method of scoring.	Tho first			
distribution of log likelihood ratio. Wald	Unit 3: Tests based on MLES.	topic in			
Test, Score Test, locally most powerful	distribution of log likelihood ratio	existing Unit			
tests. Applications to categorical data	Wald Test, Score Test, locally most	4 shifted to			
analysis, three dimensional	powerful tests. Applications to	Unit 3 in the			
contingency tables,	categorical data analysis,three	proposed			
I R test Asymptotic comparison of	dimensional contingency tables.	one.			
tests. Asymptotic Relative Efficiency	Pearson's chi-square test and LR	Unit 4 has			
(Pitman's), asymptotic normality of	Unit 4. Asymptotic comparison of	been			
posterior distributions.	tests. Asymptotic Relative Efficiency	modified			
	(Pitman's). Introduction to	with the			
Books for Reference:	Nonparametric Methods, one sample	addition of			
Parametric Inference, Second Edition	tests; Kolmogorov-Smirnov test, sign	nonparamet			
Narosa.	test, Wilcoxon –signed rank test.	as it was felt			
2. Cramer, H.(1974). Mathematical	sample problem	that the			
Methods in Statistics, Princeton Univ.		students will			
Press.	Books for Reference:	not be			
3. Rao, C. R. (1995). Linear Statistical	1. Casella, G. and Berger, R. L.	exposed to			
Eastern Ltd	(1990). Statistical Inference. Pacific	nonparamet			
4. Silvev, S. D.(1975). Statistical	Grove, CA: Wadsworth/Brooks Cala	in case they			
Inference, Chapman- Hall.	2 Cramer H (1974) Mathematical	do not get			
5. Wilks, S.S. (1962). Mathematical	Methods in Statistics, Princeton Univ.	to study the			
Statistics, John Wiley.	Press.	softcore			
6. Ferguson, T.S. (1996). A Course in	3. Ferguson, T.S. (1996). A Course	paper on			
Hall	in Large Sample Theory, Chapman	nonparamet			
i idii.		ne memous.			

	 and Hall. 4. Gibbons, J.D., Chakraborti, S (2003). Nonparametric Statistical Inference, Fourth edition, CRC press. 5. Kale B.K. (2005). A First Course on Parametric Inference. Second Edition, Narosa. 6. Rao, C. R.(1995). Linear Statistical Inference and its Applications, Wiley Eastern Ltd. 7. Silvey, S. D.(1975). Statistical Inference, Chapman- Hall. 	References have been updated with some new books
--	---	--

2.	Proposed	changes	in	Statistical	Com	puting	paper

2. Proposed changes in Statistica	al Computing paper	
Exisiting syllabus	Proposed syllabus	Remarks /
Hard Core / Compulsory Paper:	Hard Core / Compulsory Paper:	Justificatio
(LTP=301)	(LTP=004)	ns
Paper V: Statistical Computing (4	Paper V: Statistical Computing (4	
Credits – 3 hours of Theory teaching	Credits – 0 hours of Theory + 4	LTP pattern
per week + 2 hours of Practicals per	hours of Practicals per week)	to stress
week)		more on
	Unit 1: A general overview of R.	practical
Unit 1: Programming in C / R. (The	Numeric/Character/logical; real	knowledge
purpose of this unit is to introduce	/integer/complex string and the paste	
programming with the eventual aim of	command matrices, dataframes,	Unit 1
developing skills required to .write	lists, setwd,read.table,read.csv.write.	consists of
statistical software. Should there be	matrix, write.csv, creation of new	basics of R
this unit can be replaced with a more	factor round apply creation of	programmin
advanced unit in object oriented	nation, round, apply, creation of	g
programming in C++ or Java Topics	source print saving work space/	
should include Simple syntax, loops	history, R-help command: help.	
pointers and arrays, functions.	search(), r mailing list, contributed	
input/output, and linking to databases.	documentation on cran. Descriptive	
	statistics and Graphics in R:	
Unit 2: Numerical analysis and	summary statistics for single group,	
statistical applications. (The purpose of	the plot-command, histogram, box	
this unit is to apply programming skills	plot bar plot, lines, points, segments,	
in me1hods and algorithms useful in	arrows, paste, inserting math.	
probability, statistics and data analysis.	symbols in a plot, pie diagram,	
Topics should include numerical	customization of plot- setting	
integration, root extraction, random	graphical parameters text and m-text	
number generation, Monte Carlo	the pairs command. Graphical	
drawing random samples : known	parameters such as	
univariate probability distributions -both	m/vlim/cev/axis/tck/srt/main/title/lege	
discrete and continuous	nd/locator/ identity	
	noncoulon nontity.	
Unit 3: Analysis of interesting data	Unit 2: One and two sample t-tests,	Unit 2
sets using known techniques on a	chi-squared tests, F- test for equality	introduces
suitable statistical package	of variance, nonparametric tests,	statistical
such as R / MINITAB / SAS / SPSS /	regression analysis, checking the	methods.

JMPIN; Topics should include graphics, descriptive statistics, representation of multivariate data, hypotheses testing, analysis of variance and linear regression. Books for Reference: Crawley, M. The R programming language, Shareware. Keminghan, B. W. and Ritchie, D. M. (1988): The C Programming Language, Second Edition, Prentice	assumptions of normality, Q-Q plots, P-P plots. ANOVA. Matrix operations, addition, subtraction, multiplication, linear equation and eigenvalues, finding rank, inverse, g- inverse, determinant. R –functions; some useful built in r functions, attach, detach, sort, order, rank, ceiling, floor, round, trunc, signif, apply, lapply, by. Programming in R;fro/while/loops, functions, the source command.	
Hall. Press, W. H., Teukolsky, S. A., Vellering, W. T. and Flannery, B. P. (1993): Numerical recipes in C, Second Edition, Cambridge University Press. Ryan, B. and Joiner, B. L. (2001):MINITAB Handbook, Fourth Edition, Duxbury. Thisted, R. A. (1988): Elements of Statistical Computing. Chapman and Hall.	Unit 3: Numerical analysis and statistical applications. Numerical integration, root extraction, random number generation, Monte Carlo integration, matrix computations, drawing random samples from known univariate probability distributions -both discrete and continuous and bivariate normal distribution - the inverse method, the accept- rejection method, decomposition of discrete mixtures, Classical Monte Carlo integration. R- functions for generating random variables and simulations; rnorm, rbinom, rpiosson, runif,rchisq,rt, etc.,; sample, set.seed.	Unit 3 introduces numerical analysis and statistical applications , generation of random samples, etc.
	Unit 4: Writing / performing programs using MATLAB /MINITAB/ SPSS/ Excel on problems from the following topics: Descriptive statistics and Graphs, One and two sample parametric and nonparametric tests, Chi-square tests, Regression and correlation analysis, Analysis of Variance and Kruskal-Wallis Test.	Unit 4 is to expose students to one other software.
	References: 1. Dalgaard, P. (2002). Introductory Statistics with R. Springer Verlag, New York. 2. Kerns, G.J. (2010). Introduction to Probability and Statistics Using R. Free Software Foundation. 3. Kunte, Sudhakar (1999). Statistical Computing: 1. Understanding Randomness and Random Numbers, Resonance, Vol.4, No.10, pp.16-21. 4. Kunte. Sudhakar (2000).	References have been updated with some new books

Statistical Computing: 2. Technique of Statistical <i>Simulation,Resonance,</i> Vo1.5, No.4, pp.18-27. 5. Robert, C. and Casella, G. (2010). Introducing Monte Carlo Methods with R. Springer Verlag, New York. 6. Sudha G Purohit, Sharad D Gore, Shailaja R Deshmukh (2010) Statistics Using R, Alpha Science Intl. Publ. Verzani, J. (2005). Using R for Introductory Statistics. Taylor & Francis	