UNIVERSITY OF MYSORE

Postgraduate Entrance Examination October - 2022

QUESTION PAPER BOOKLET NO.

103535

Entrance Reg. No.

SUBJECT CODE :

QUESTION BOOKLET

(Read carefully the instructions given in the Question Booklet)

COURSE:

M.Sc.

SUBJECT : Group-4: Chemistry/Organic Chemistry

MAXIMUM MARKS: 50

MAXIMUM TIME: 75 MINUTES

(Including time for filling O.M.R. Answer sheet)

INSTRUCTIONS TO THE CANDIDATES

- 1. The sealed question paper booklet containing 50 questions enclosed with O.M.R. Answer Sheet is given to you.
- 2. Verify whether the given guestion booklet is of the same subject which you have opted for examination.
- 3. Open the question paper seal carefully and take out the enclosed O.M.R. Answer Sheet outside the question booklet and fill up the general information in the O.M.R. Answer sheet. If you fail to fill up the details in the form as instructed, you will be personally responsible for consequences arising during evaluating your Answer Sheet.
- 4. During the examination:
 - a) Read each question carefully.
 - b) Determine the Most appropriate/correct answer from the four available choices given under each question.
 - c) Completely darken the relevant circle against the Question in the O.M.R. Answer Sheet. For example, in the question paper if "C" is correct answer for Question No.8, then darken against SI. No.8 of O.M.R. Answer Sheet using Blue/Black Ball Point Pen as follows:

Question No. 8. A B (Only example) (Use Ball Pen only)

- 5. Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the O.M.R. Answer Sheet.
- 6. If more than one circle is darkened for a given question, such answer is treated as wrong and no mark will be given. See the example in the O.M.R. Sheet.
- 7. The candidate and the Room Supervisor should sign in the O.M.R. Sheet at the specified place.
- 8. Candidate should return the original O.M.R. Answer Sheet and the university copy to the Room Supervisor after the examination.
- 9. Candidate can carry the question booklet and the candidate copy of the O.M.R. Sheet.
- 10. The calculator, pager and mobile phone are not allowed inside the examination hall.
- 11. If a candidate is found committing malpractice, such a candidate shall not be considered for admission to the course and action against such candidate will be taken as per rules.
- 12. Candidates have to get qualified in the respective entrance examination by securing a minimum of 8 marks in case of SC/ST/Cat-I Candidates, 9 marks in case of OBC Candidates and 10 marks in case of other Candidates out of 50 marks.

INSTRUCTIONS TO FILL UP THE O.M.R. SHEET

- 1. There is only one most appropriate/correct answer for each question.
- 2. For each question, only one circle must be darkened with BLUE or BLACK ball point pen only. Do not try to alter it.
- 3. Circle should be darkened completely so that the alphabet inside it is not visible.
- 4. Do not make any unnecessary marks on O.M.R. Sheet.
- 5. Mention the number of questions answered in the appropriate space provided in the O.M.R. sheet otherwise O.M.R. sheet will not be subjected for evaluation.

ಗಮನಿಸಿ : ಸೂಚನೆಗಳ ಕನ್ನಡ ಆವೃತ್ತಿಯು ಈ ಮಸ್ತಕದ ಹಿಂಭಾಗದಲ್ಲಿ ಮುದ್ರಿಸಲ್ಪಟ್ಟಿದೆ.

1)		the quantum numbers n=3, 1= ntum numbers?	=2 and m=+	- 1, which orbital has this set of			
	(A)	$d_{x^2-y^2}$	(B)	d_{xz}			
	(C)	d_{yz}	(D)	d_{z^2}			
2)		Atomic number of Cu-atom is 29 (Z=29), the number of electrons with the azimuthal quantum numbers 1=1 and 1=2 respectively,					
	(A)	12 and 10	(B)	12 and 9			
	(C)	12 and 6	(D)	12 and 3			
3)	The	The correct order of first ionization potential in the following set is					
	(A)	K > Na > Li	(B)	B > C > N			
	(C)	Be > Mg > Ca	(D)	Ge > Se > C			
4)	hybr (i) (ii) (iii) (iv)	ich of the following completidization of their central metal Ni(CO) ₄ ; sp ³ [Ni(CN) ₄] ²⁻ ; sp ³ [CoF ₆] ³⁻ ;d ² sp ³ [Fe(CN) ₆] ³⁻ ;sp ³ d ² ect the correct option:		ot correctly matched with the			
	(A)	(i) and (ii)	(B)	(i) and (iii)			
	(C)	(i), (ii) and (iv)	(D)	(ii), (iii) and (iv)			
5)	Identify the type of process involved in the following chemical reaction:						
	$Al_2O_3.2H_2O \longrightarrow Al_2O_3 + 2H_2O$						
	(A)	Roasting	(B)	Calcination			
	(C)	Smelting	(D)	Reduction			
	(0)						
6)		at will be the effect of acidity b	by the addit	ion of KNH, in liquid ammonia			
6)		at will be the effect of acidity be Increase	by the addit	ion of KNH ₂ in liquid ammonia Neutralize			

7) The number of α - and β - particles emitted in the reaction :

$${}^{238}_{92}U \longrightarrow {}^{206}_{92}$$
 Pb, are

(A) 8α, 6β

(B) 6α, 8β

(C) 8a, 10ß

- (D) $6\alpha,4\beta$
- 8) Ce⁴⁺ is intensely coloured due to
 - (A) f-f transition
 - (B) d-d transition
 - (C) the charge transfer
 - (D) the presence of unpaired electrons
- 9) Cobalt(III) forms several octahedral complexes with ammonia. Which of the following will not give a test for chloride ions with AgNO₃?
 - (A) CoCl₃.3NH₃
- (B) CoCl₃.4NH₃
- (C) CoCl₃.5NH₃

- (D) CoCl₃.6NH₃
- 10) Based on MOT, Identify the correct statement about magnetic property and bond order with respect to O₂⁺.
 - (A) Paramagnetic and bond order is less than O,
 - (B) Paramagnetic and bond order is greater than O₂
 - (C) Diamagnetic and bond order is less than O,
 - (D) Diamagnetic and bond order is greater than O,
- 11) Molecular structures of noble gas compounds of XeO₃ and XeOF₄ are respectively,
 - (A) Trigonal planar and square planar
 - (B) Pyramidal and trigonal bipyramidal
 - (C) Pyramidal and square pyramidal
 - (D) Trigonal planar and square pyramidal
- 12) The CFSE of Co(III) in $[CoF_6]^{3-}$ is
 - (A) 4Dq + P

(B) -6Dq+P

(C) - 8Dq+P

(D) - 10Dq+P

13)	The compounds [Cr(H ₂ O) ₆]Cl ₃ and [Cr(H ₂ O) ₄ Cl ₂]H ₂ O represent				
	(A)	Ligand isomerism	(B)	Linkage isomerism	
	(C)	Hydrate isomerism	(D)	Ionization isomerism	
14)		median in the given data 3.080, 3. 8 is	094,	3.107, 3.056, 3.112, 3.174 and	
	(A)	3.056	(B)	3.198	
	(C)	3.094	(D)	3.107	
15)	Whi	ch of the following not containing pe	olar l	oond?	
	(A)	CO,	(B)	O ₃ the argument of the op-	
		NCl ₃	(D)	CH ₄	
16)	Benz	zene and toluene are separated by			
		Distillation	(B)	Fractional distillation	
	, ,	Distillation under reduced pressure			
17)	Ooto	ane 2,7-dione is obtained from the o	7010	lysis of	
1/)					
		1,3-Dimethyl cyclohexene			
	(C)	1,4-Dimethyl cyclohexene	(D)	1,2-Difficulty Cyclonexene	
18)	Reaction of benzyl chloride with hexamethylene tetramine in aqueous ethan followed by acidification gives				
	(A)	Benzylamine	(B)	Benzyl alcohol	
	(C)	Benzaldehyde	(D)	Benzyl ethyl ether	
19)	Aromatic sulphonation is				
/	(A)	Reversible nucleophilic substitution	1	New York of the Control of the Contr	
	(B)	Reverse electrophilic substitution			
	(C)	Irreversible nucleophilic substitution			
	(D)	Irreversible electrophilic substitutio			
20)	Met	hyl magnesium iodide reacts with eth	nyl oi	rthoformate gives	
	(A)	acetaldehyde	(B)	acetone	
	(C)	trimethyl carbinol	(D)	ethane	
	()		, ,		

- 21) Phenyl acetate on heating with anhydrous Aluminium chloride followed by acidification to give
 - (A) Meta hydroxyl acetophenone
- (B) Acetic acid

(C) Benzoic acid

- (D) Ortho hydroxyl acetophenone
- 22) Cannizzaro's reaction involves an intermolecular transfer of
 - (A) H

(B) H

(C) OH

- (D) H
- 23) Identify the product in the following reaction:

Glucose
$$\xrightarrow{\text{HI, red P}}$$
?

(A) 1-iodo hexane

(B) 2-iodo hexane

(C) 3-iodo hexane

- (D) n-hexane
- 24) Arrange the following in the increasing order of basicity
 - p-methoxy aniline i)

Aniline ii)

- N,N-dimethyl aniline iii)
- (A) ii<i<iiii

(B) i<iii<iii

(C) ii<iii<i

- (D) iii<ii<i
- 25) Name the R, S notations for the following:

(A) R, R

(B) R, S

(C) S, S

(D) S, R

26)	Oxidation of citral with alkaline potassium permanganate followed by chromic acid gives.				
	(A)	A) Acetone, glyoxal and pimelic acid			
	(B)	Acetone, oxalic acid and laevulic ac	cid		
	(C)	Acetone, glyoxalic acid and pimario	c acid		
	(D)	Acetone, glyoxal and linolenic acid			
27)	Basi	city of Pyrrole and Pyridine is			
	(A)	Pyridine is more basic than Pyrrole			
	(B)	Pyrrole is more basic than Pyridine			
	(C)	Pyrrole and Pyridine have same bas	sicity	es authorition partie unitale de	
	(D)	None of these			
28)	The	two-ring system present in nicotine	are		
	(A)	Pyridine and Pyrrole	(B)	Pyridine and Pyrrolidine	
	(C)	Piperidine and Pyrrole	(D)	Piperidine and Pyrrolidine	
29)	The	The IR stretching frequency of carbonyl group of acetophenone is			
	(A)	1600 cm-1	(B)	1690 cm-1	
	(C)	2830 cm-1	(D)	3320 cm-1	
30)	Neo	prene is a			
	(A)	Fibre	(B)	Drug	
	(C)	Plastic	(D)	Rubber	
31)	The	ionic strength (μ) for 0.05 M K ₂ SO	4 is		
	(A)	0.5M	(B)	0.15M	
	(C)	0.2M	(D)	0.6M	

32)	Plants and living beings are the examples of,				
	(A) Isola	ated system	(B)	Adiabatic system	
	(C) Ope	n system	(D)	Closed system	
33)	For a linear plot of $\log (x/m)$ versus $\log p$ in a Freundlich adsorption isotherm, the correct statement is (k and n are constants).				
	(A) Both	k and 1/n appear in the slope	term		
	(B) 1/n a	appears as the intercept			
	(C) Only	1/n appears as the slope			
	(D) log ((1/n) appears as the intercept			
34)	The Nern	st distribution law is applied in	the		
	(A) Haber's process for the manufacture of NH ₃				
	(B) Park	e's process for the extraction	of Ag	5	
	(C) Contact process for the manufacture of H ₂ SO ₄				
	(D) Mond's process for the extraction of metal				
35)	Three aqueous solutions of KC1 labelled as X, Y and Z with concentrations 0.2 M, 0.02 M and 0.002 M, respectively. The order of van't Hoffs factor for the solutions is				
	(A) ix <	iy < iz	(B)	ix > iy > iz	
	(C) ix=	iy = iz	(D)	ix < iy > iz	

36) The hydrogen ion concentration of a solution with pH value 2.69 is...

(A) $2.042 \times 10^{-3} \text{ M}$

(B) $3.69 \times 10^{-2} \text{ M}$

(C) $4.31 \times 10^{-4} \text{ M}$

(D) 0.369 M

37) What is the concentration of H₂SO₄ when 10 mL of 0.2 M of H₂SO₄ is added to 90 mL of HO?

(A) 0.02 N

(B) 0.04 M

(C) 0.04 N

(D) 0.002 M

38) The increase in internal energy of the system is 100 J when 300 J heat is supplied to it. What is the amount of work done by the system?

(A) - 200 J

(B) +200 J

(C) - 300J

(D) -400J

39) The Miller indices of crystal planes which cut through crystal axes at (6a, 3b, 3c) is,

(A) (2, 3, 1)

(B) (3, 2, 6) (D) (1, 2, 2)

(C) (1, 3, 2)

40) A molecule absorbs microwave photons of wave length 20 cm and causes rotation, the energy difference between the two rotational levels in joules is

(A) 3.3×10^{-25}

(B) 9.9×10^{-25}

(C) 5.9×10^{-25}

(D) 4.3×10^{-25}

41) The solubility 's' of a sparingly soluble salt is related to its equivalent conductance at infinite dilution by the relation (k in specific conductance)

(A) $s = \frac{k \times 1000}{\lambda_{-} - \lambda}$

(B) $s = \frac{c \times 1000}{\lambda_{co} - \lambda}$

(C) $s = \frac{k \times 1000}{\lambda}$

(D) $s = \frac{c \times 1000}{\lambda_{-1}}$

42)	The total number of normal modes of vibrations of N ₂ O molecule will be				
	(A)	4	(B)	3	
	(C)	6	(D)	2	
43)	The	alkali hydrolysis of an ester represe	ented	by,	
	CH ₃	$_{3}COOC_{2}H_{5} + NaOH \longrightarrow CH_{3}CO$	ONa	+ C ₂ H ₅ OH, this reaction is,	
	(A)	Second -order but not bimolecular			
	(B)	Bimolecular but first-order			
	(C)	Bimolecular but not second-order			
	(D)	Bimolecular and second-order			
44)		$t_{1/2}$ of a reaction is doubled as the ibled, the order of the reaction is,	nitial	concentration of the reactant is	
	(A)	Second-order	(B)	Zero-order	
	(C)	First-order	(D)	Fractional-order	
45)	The	primary reference electrode for the	meas	urement of electrode potential is	
	(A)	Glass electrode	(B)	Normal calomel electrode	
	(C)	Standard hydrogen electrode	(D)	Silver-silver chloride electrode	
46)	Whi	ich of the following element is assoc	inted	with farmallove?	
40)					
	(A)	Copper	(B)	Nickel	
	(C)	Silicon	(D)	Zinc	
MA	-901	5 [9]		(РТО)	

47)	In the analysis of copper-nickel alloy, the nickel is determined gravimetrically using				
	(A)	Diphenylamine	(B)	Dithiooxamide	
	(C)	8-hydroxy quinoline	(D)	Dimethylglyoxime	
48)	Which of the following is not used to detect manganese(II) ion in an analy of inorganic mixture?				
	(A)	Lead oxide	(B)	Zinc oxide	
	(C)	Potassium persulfate	(D)	Sodium bismuthate	
49)	Iron (III) is treated with thiocyanate to give red colouration due to				
	(A)	Reduction	(B)	Oxidation	
	(C)	Complexation	(D)	Neutralization	
				rangan ini na singkalamb	
50)	Iron in the haematite ore is determined volumetrically using dichromate as a oxidant. An indicator used in this experiment is				
	(A)	Diphenylamine	(B)	Ferroin	
	(C)	Phenolphthalein	(D)	Neutral Red	

Rough Work

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು

ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಜೊತೆಗೆ 50 ಪ್ರಶ್ನೆಗಳನ್ನು ಹೊಂದಿರುವ ಮೊಹರು ಮಾಡಿದ ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ನಿಮಗೆ ನೀಡಲಾಗಿದೆ.

2. ಕೊಟ್ಟಿರುವ ಪ್ರಶ್ನೆ ಮಸ್ತಕವು, ನೀವು ಪರೀಕ್ಷೆಗೆ ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿರುವ ವಿಷಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ್ದೇ

ಎಂಬುದನ್ನು ಪರಿಶೀಲಿಸಿರಿ.

3. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಮೊಹರನ್ನು ಜಾಗ್ರತೆಯಿಂದ ತೆರೆಯಿರಿ ಮತ್ತು ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯನ್ನು ಹೊರಗೆ ತೆಗೆದು, ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಸಾಮಾನ್ಯ ಮಾಹಿತಿಯನ್ನು ತುಂಬಿರಿ. ಕೊಟ್ಟರುವ ಸೂಚನೆಯಂತೆ ನೀವು ನಮೂನೆಯಲ್ಲಿನ ವಿವರಗಳನ್ನು ತುಂಬಲು ವಿಫಲರಾದರೆ, ನಿಮ್ಮ ಉತ್ತರ ಹಾಳೆಯ ಮೌಲ್ಯಮಾಪನ ಸಮಯದಲ್ಲಿ ಉಂಟಾಗುವ ಪರಿಣಾಮಗಳಿಗೆ ವೈಯಕ್ತಿಕವಾಗಿ ನೀವೇ ಜವಾಬ್ದಾರರಾಗಿರುತ್ತೀರಿ.

ಪರೀಕ್ಷೆಯ ಸಮಯದಲ್ಲಿ:

ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಯನ್ನು ಜಾಗ್ರತೆಯಿಂದ ಓದಿರಿ.

ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ನೀಡಿರುವ ನಾಲ್ಕು ಲಭ್ಯ ಆಯ್ಕೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸರಿಯಾದ/ ಸೂಕ್ತವಾದ

ಉತ್ತರವನ್ನು ನಿರ್ಧರಿಸಿ.

- c) ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಯ ವೃತ್ತಾಕಾರವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿರಿ. ಉದಾಹರಣೆಗೆ, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8ಕ್ಕೆ "C" ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದರೆ, ನೀಲಿ/ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಬಳಸಿ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಕ್ರಮ ಸಂಖ್ಯೆ 8ರ ಮುಂದೆ ಈ ಕೆಳಗಿನಂತೆ ತುಂಬಿರಿ:
- ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8. 🔘 📵 🔘 (ಉದಾಹರಣೆ ಮಾತ್ರ) (ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರ ಉಪಯೋಗಿಸಿ) ಉತ್ತರದ ಪೂರ್ವಸಿದ್ದತೆಯ ಬರವಣಿಗೆಯನ್ನು (ಚಿತ್ತು ಕೆಲಸ) ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಒದಗಿಸಿದ ಖಾಲಿ ಜಾಗದಲ್ಲಿ ಮಾತ್ರವೇ ಮಾಡಬೇಕು (ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಮಾಡಬಾರದು).

6. ಒಂದು ನಿರ್ದಿಷ್ಟ ಪ್ರಶ್ನೆಗೆ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಾಕಾರವನ್ನು ಗುರುತಿಸಲಾಗಿದ್ದರೆ, ಅಂತಹ ಉತ್ತರವನ್ನು ತಮ್ಮ ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ಅಂಕವನ್ನು ನೀಡಲಾಗುವುದಿಲ್ಲ. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಉದಾಹರಣೆ ನೋಡಿ.

7. ಅಭ್ಯರ್ಥಿ ಮತ್ತು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ನಿರ್ದಿಷ್ಟಪಡಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯ ಮೇಲೆ ಸಹಿ

ಮಾಡಬೇಕು.

8. ಅಭ್ಯರ್ಥಿಯು ಪರೀಕ್ಷೆಯ ನಂತರ ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಮೂಲ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆ ಮತ್ತು ವಿಶ್ವವಿದ್ಯಾನಿಲಯದ ಪ್ರತಿಯನ್ನು ಹಿಂದಿರುಗಿಸಬೇಕು.

9. ಅಭ್ಯರ್ಥಿಯು ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ಮತ್ತು ಓ.ಎಂ.ಆರ್. ಅಭ್ಯರ್ಥಿಯ ಪ್ರತಿಯನ್ನು ತಮ್ಮ ಜೊತೆ ತೆಗೆದುಕೊಂಡು

ಹೋಗಬಹುದು.

10. ಕ್ಯಾಲ್ಕುಲೇಟರ್, ಪೇಜರ್ ಮತ್ತು ಮೊಬೈಲ್ ಘೋನ್ ಗಳನ್ನು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಒಳಗೆ ಅನುಮತಿಸಲಾಗುವುದಿಲ್ಲ.

11. ಅಭ್ಯರ್ಥಿಯು ದುಷ್ಕೃತ್ಯದಲ್ಲಿ ತೊಡಗಿರುವುದು ಕಂಡುಬಂದರೆ, ಅಂತಹ ಅಭ್ಯರ್ಥಿಯನ್ನು ಕೋರ್ಸ್ಗೆ ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಅಂತಹ ಅಭ್ಯರ್ಥಿಯ ವಿರುದ್ಧ ಕ್ರಮ ಕೈಗೊಳ್ಳಲಾಗುವುದು.

12. ಈ ಪ್ರವೇಶ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಅರ್ಹರಾಗಲು ಒಟ್ಟು 50 ಅಂಕಗಳಲ್ಲಿ SC/ST/Cat-I ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 8 ಅಂಕಗಳನ್ನು, OBC ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 9 ಅಂಕಗಳನ್ನು ಮತ್ತು ಇನ್ನಿತರ ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 10 ಅಂಕಗಳನ್ನು ಪಡೆಯತಕ್ಕದ್ದು.

ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯನ್ನು ತುಂಬಲು ಸೂಚನೆಗಳು

1. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೆ ಒಂದೇ ಒಂದು ಅತ್ಯಂತ ಸೂಕ್ತವಾದ/ಸರಿಯಾದ ಉತ್ತರವಿರುತ್ತದೆ.

2. ಪ್ರತಿ ಪ್ರಶ್ನೆಗೆ ಒಂದು ವೃತ್ತವನ್ನು ಮಾತ್ರ ನೀಲಿ ಅಥವಾ ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ನುಂದ ಮಾತ್ರ ತುಂಬತಕ್ಕದ್ದು. ಉತ್ತರವನ್ನು ಮಾರ್ಪಡಿಸಲು ಪ್ರಯತ್ನಿಸಬೇಡಿ.

3. ವೃತ್ತದೊಳಗಿರುವ ಅಕ್ಷರವು ಕಾಣದಿರುವಂತೆ ವೃತ್ತವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬುವುದು.

4. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿ ಯಾವುದೇ ಅನಾವಶ್ಯಕ ಗುರುತುಗಳನ್ನು ಮಾಡಬೇಡಿ.

5. ಉತ್ತರಿಸಿದ ಪ್ರಶ್ನೆಗಳ ಒಟ್ಟು ಸಂಖ್ಯೆಯನ್ನು O.M.R. ಹಾಳೆಯಲ್ಲಿ ನಿಗದಿಪಡಿಸಿರುವ ಜಾಗದಲ್ಲಿ ನಮೂದಿಸತಕ್ಕದ್ದು, ಇಲ್ಲವಾದಲ್ಲಿ O.M.R. ಹಾಳೆಯನ್ನು ಮೌಲ್ಯಮಾಪನಕ್ಕೆ ಪರಿಗಣಿಸುವುದಿಲ್ಲ.

Note: English version of the instructions is printed on the front cover of this booklet.

