Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301

e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY SOF MYSORE

Estd. 1916

No.AC2(S)/151/2020-21

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 04.10.2023

Notification

- Sub:- Modification Syllabus and Scheme of Examinations Biotechnology (UG) (IIIrd & IVth Semester) with effect from the Academic year 2023-24.
- **Ref:-** Decision of Board of Studies in Biotechnology (UG) meeting held on 15.09.2023.

The Board of Studies in Biotechnology (UG) which met on 15.09.2023 has resolved to recommended and approved the syllabus and scheme of Examinations of Biotechnology Programme (IIIrd & IVth Semester) with effect from the Academic year 2023-24.

Pending approval of the Faculty of Science & Technology and Academic Council meetings the above said syllabus and scheme of examinations are hereby notified.

The syllabus and scheme of Examinations contents may be downloaded from the University website i.e., <u>www.uni-mysore.ac.in</u>.

DRAFT AF PROVED BY THE REGISTRAR

Deputy Registrar (Academic) Deputy Registrar (Academic) University of Mysore Mysore 570 005

To;

- 1. All the Principal of affiliated Colleges of University of Mysore, Mysore.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS in Biotechnology, Manasagangothri, Mysore.
- 4. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 5. The Director, PMEB, University of Mysore, Mysore.
- 6. Director, College Development Council, Manasagangothri, Mysore.
- 7. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 8. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 9. Office Copy.

UNIVERSITY OF MYSORE

CURRICULUM FOR Semester III and IV

B.Sc (Basic/ Hons.) Degree

BIOTECHNOLOGY (As per NEP-2020 Model Curriculum)

Implementation Year 2021-22

Approved by BOS in Biotechnology (UG) DEPARTMENT OF STUDIES IN BIOTECHNOLOGY MANASAGANGOTRI, MYSURE – 570 006

September 2023

Government of Karnataka

Model Curriculum

Program Name	B.Sc. Discipline	Total Credits for the Program	176
Core	Biotechnology	Starting year of implementation	2021-22

Program Outcomes: At the end of the program the student should be able to:

(Refer to literature on outcome-based education (OBE) for details on Program Outcomes)

- PO1. Understandingconcepts of Biotechnology and demonstrate interdisciplinary skills acquired in cell biology, genetics, biochemistry, microbiology, and molecular biology
- PO2. Demonstrating the Laboratory skills in cell biology, basic and applied microbiology withan emphasis on technological aspects
- PO3. Competent to apply the knowledge and skills gained in the fields of Plantbiotechnology, animal biotechnology and microbial technology in pharma, food, agriculture, beverages, herbal and nutraceutical industries.
- PO4. Critically analyse the environmental issues and apply the biotechnology knowledgegained for conserving the environment and resolving the problems.
- PO5. Demonstrate comprehensive innovations and skills in the fields of biomolecules, celland organelles, molecular biology, bioprocess engineering and genetic engineering ofplants, microbes, and animals with respect to applications for human welfare.
- PO6. Apply knowledge and skills of immunology, bioinformatics, computational modelling ofproteins, drug design and simulations to test the models and aid in drug discovery.
- PO7. Critically analyse, interpret data, and apply tools of bioinformatics and multi omics invarious sectors of biotechnology including health and Food.
- PO8. Demonstrate communication skills, scientific writing, data collection and interpretationabilities in all the fields of biotechnology.
- PO9. Learning and practicing professional skills in handling microbes, animals and plants and demonstrate the ability to identify ethical issues related to recombinant DNA technology, genetic engineering, animals handling, intellectual property rights, biosafety, and biohazards.
- PO10. Exploring the biotechnological practices and demonstrating innovative thinking inaddressing the current day and future challenges with respect to food, health, and environment.
- PO11. Thorough knowledge and application of good laboratory and good manufacturingpractices in biotech industries.
- PO12. Understanding and application of molecular biology techniques and principles inforensic and clinical biotechnology.
- PO13. Demonstrate entrepreneurship abilities, innovative thinking, planning, and setting upsmall-scale enterprises or CROs.

Assessment:

Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	25	25
Projects	-	-
Experiential Learning (Internships etc.)	-	-

Course Content for B.Sc. Biotechnology as Major Semester III & IV

er		e ry			Mar	ks	
Semest	Course code	Cours Catego	Theory/ Practica	Credit	Paper Title	S.A	I.A
	BTC: 103	DSC-3	Theory	3	Biomolecules	60	40
3.		22000	Practical	2	Biomolecules	25	25
		OE- 3	Theory	3	Nutrition and Health	60	40
	BTC:104 DSC-4		Theory	3	Molecular Biology	60	40
4.			Practical	2	Molecular Biology	25	25
		OE- 4	Theory	3	Intellectual Property Rights	60	40

Government of Karnataka Model Curriculum

Program Name	BSc Biotechno	ology		Semester	Third Sem		
Course Title	Biomolecules						
Course No.	BTC: 301 DSC -3T			No. of Theory Credits 4			
Contact hours	rs 56 hrs			Duration of ESA/Exam 2.5 Hours			
Formative Assessment Marks		40		Summative Assessment Ma	arks 60		

Course Pre-requisite (s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Acquire knowledge about types of biomolecules, structure, and their functions
- 2. Will be able to demonstrate the skills to perform bioanalytical techniques
- 3. Apply comprehensive innovations and skills of biomolecules to biotechnology field

Content	Hrs
Unit–I	14
Carbohydrates: Introduction, sources, classification of carbohydrates. Structure, function and properties of carbohydrates. Monosaccharides – Isomerism and ring structure, Sugar derivatives – amino sugars and ascorbic acid	
Disaccharides – Maltose, Lactose and Sucrose	
Polysaccharides – Classification as homo and heteropolysaccharides, Homopolysaccharides - storage polysaccharides (starch and glycogen- structure, reaction, properties), structural polysaccharides (cellulose and chitin-structure, properties), Heteropolysaccharides - glycoproteins and proteoglycans. Metabolism: Glycolysis and gluconeogenesis, Kreb's cycle, ETC- oxidative phosphorylation.	
Amino Acids, Peptides and Proteins: Introduction, classification and structure of amino acids; Zwitterion, isoelectric point, pK values. Essential and nonessential amino acids. Peptide bond and peptide, Structural organization of proteins - primary, secondary (α helix, β sheets) tertiary and quaternary. Fibrous and globular proteins, Denaturation and renaturation of proteins. General aspects of amino acid metabolism: Transamination, deamination, decarboxylation and urea cycle.	

Unit -II

Lipids: Classification and function of lipids, Saturated and unsaturated fatty acids, properties (saponification value, acid value, iodine number, rancidity), Hydrogenation of fats and oils. General structure and biological functions of phospholipids, sphingolipids, glycolipids, lipoproteins, prostaglandins, cholesterol, ergosterol. Metabolism: β oxidation of fatty acids. Biosynthesis of palmitate.

Enzymes: Introduction, nomenclature and classification, enzyme kinetics, factors influencing enzyme activity, metalloenzymes, activation energy and transition state, enzyme activity, specific activity. Coenzymes, cofactors and their functions (one reaction involving TPP, FAD, NAD). Enzyme inhibition- Irreversible and reversible (competitive, non-competitive and uncompetitive inhibition with an example each) Zymogens (trypsinogen, chymotrypsinogen and pepsinogen),

Isozymes (LDH, Creatine kinase and their clinical significance).

14

Unit -III	
Vitamins: Water and fat soluble vitamins, dietary source and biological role of vitamins Deficiency manifestation of vitamin A, B, C, D, E and K	
Nucleic acids: Structure of nucleosides, nucleotides in DNA and RNA. Structure and functions of DNA and RNA, Watson and Crick model of DNA and other forms of DNA (A and Z). Types of RNA (rRNA, tRNA, mRNA, snRNA, hnRNA, miRNA), ribozymes. Metabolism- Overview of biosynthesis and degradation of purine and pyrimidine, salvage pathway.	14
Hormones: Classification of hormones based on chemical nature and mechanism of action. Chemical structure and functions of the following hormones: Glucagon, insulin, Epinephrine, Testosterone and Estradiol.	
Unit –IV - Bioanalytical tools :	14
Chromatography: Principle, procedure and applications of - paper chromatography, thin layer chromatography, adsorption chromatography, ion exchange chromatography, gel filtration chromatography, affinity chromatography, gas liquid chromatography and high performance liquid chromatography.	
Electrophoresis: Principle, procedure and applications of electrophoresis (gel electrophoresis -PAGE, SDS- PAGE & agarose electrophoresis) and isoelectric focusing.	
Spectroscopy: Colorimetry, UV-Vis spectrophotometry, Spectrofluorimetry, atomic absorption spectroscopy, mass spectroscopy	
Radioisotope techniques: Radioisotopes, half life, , GM counter, scintillating counting	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

		Program Outcomes (POs)										
Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
Acquire knowledge about types of biomolecules, structure, and their functions	~				~							~
Will be able to demonstrate the skills to perform bioanalytical techniques			~								~	~
Apply comprehensive innovations and skills of biomolecules to biotechnology field	~				~							~

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Г

Summative Assessment = 60 Marks	
Formative Assessment Occasion / type	Weightage in Marks
Attendance	10
Seminar	10
Debates and Quiz	10
Test	10
Total	60 marks + 40 marks = 100 marks

Course Title	Biomolecules		Practical Credits	2				
Course No.	BTC:301	DSC-3P	Contact hours	48 h				
	Content							
1. Introduction	to basic instruments (P	rinciple, standard operation	ating procedure) with a	lemonstration.				
2. Definitions a (v/v), parts p solutions, sto	and calculations: Molar per million (ppm), par peck solution, solution of	ity, Molality, Normalit ts per billion (ppb), D f acids. Reagent bottle	ty, Mass percent (w/v vilution of concentrate label reading and prec	v), Percent by volume ad solutions. Standard autions.				
3. Preparation determination	of standard buffers by n of pH of solution usin	⁷ Hendersen-Hasselbac ng pH meter.	h equation – Acetate	, phosphate, Tris and				
4. Estimation of	f maltose by DNS meth	nod						
5. Determination	on of α -amylase activity	y by DNS method						
6. Estimation o	f proteins by Biuret me	thod						
7. Estimation o	f amino acid by Ninhyo	drin method						
8. Extraction of	f protein from soaked/s	prouted green gram by	salting out method					
9. Separation of	9. Separation of amino acids by circular paper chromatography							
10. PAGE	10. PAGE							
11. Determination	on of iodine number of l	lipids						

Practical assessment

Assessment					
Formative asse	Summative Assessment				
Assessment Occasion / type	Weightage in Marks	Practical Exam	Total Marks		
Record	5				
Test	10	25			
Attendance	5	25	50		
Performance	5				
Total	25	25			

Ref	l'erences
1	An Introduction to Practical Biochemistry, 3rd Edition, (2001), David Plummer; Tata McGraw Hill
	Edu.Pvt.Ltd. New Delhi, India
2	Biochemical Methods,1st Edition, (1995), S.Sadashivam, A.Manickam; New Age International
	Publishers, India
3	Introductory Practical biochemistry, S. K. Sawhney&Randhir Singh (eds) Narosa Publishing. House,
	New Delhi, ISBN 81-7319-302-9
4	Experimental Biochemistry: A Student Companion, BeeduSasidharRao& Vijay Despande(ed).I.K
	International Pvt. LTD, NewDelhi. ISBN 81-88237-41-8
5	Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed), Kalyani Publishers, Ludhiana
	ISBN 81-7663-067

Government of Karnataka Model Curriculum

Program Name	BSc Biotechnolog	gy	Semester	Third Sem
Course Title	Nutrition and He	ealth		
Course Code		OE-3	No. of Theory Credits	3
Contact hours	Lecture	42 h	Duration of ESA/Exam	2.5 Hours
Contact nours	Practical	-		
Formative Assessment Marks40Summative Assessment Marks60			arks 60	

Course Pre-requisite(s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Study the concepts of food, nutrition, diet and health
- 2. To apply the best practices of food intake and dietary requirements
- 3. Acquire knowledge about various sources of nutrients and good cooking practices

Content	42 Hrs
Unit–I - Introduction	14 Hrs
Concepts of nutrition and health. Definition of Food, Diet and nutrition, Food groups. Food pyramids. Functions of food. Balanced diet. Meal planning. Eat right concept. Functional foods, Prebiotics, Probiotics, and antioxidants	
Unit -II - Nutrients	14 Hrs
Macro and Micronutrients - Sources, functions and deficiency. Carbohydrates, Proteins, Fats – Sources and calories. Minerals –Calcium, Iron, Iodine. Vitamins – Fat soluble vitamins –A, D, E & K. Water soluble vitamins – vitamin C, Thiamine, Riboflavin, Niacin. Water–Functions and water balance. Fibre –Functions and sources. Recommended Dietary Allowance, Body Mass Index and Basal Metabolic Rate.	
Unit -III – Nutrition and Health	14 Hrs
Methods of cooking affecting nutritional value. Advantages and disadvantages. Boiling, steaming, pressure cooking. Oil/Fat – Shallow frying, deep frying. Baking. Nutrition through lifecycle. Nutritional requirement, dietary guidelines: Adulthood, Pregnancy, Lactation, Infancy- Complementary feeding, Pre-school, Adolescence, geriatric. Nutrition related metabolic disorders- diabetes and cardiovascular disease.	

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks	
Formative Assessment Occasion / type	Weightage in Marks
Attendance	10
Seminar	10
Debates and Quiz	10
Test	10
Total	60 marks + 40 marks = 100 marks

Ref	erences
1	Sri Lakshmi B, (2007), Dietetics. New Age International publishers. New Delhi
2	Sri Lakshmi B, (2002), Nutrition Science. New Age International publishers. New Delhi
3	Swaminathan M. (2002), Advanced text book on food and Nutrition. Volume I. Bappco
4	Gopalan.C., RamaSastry B.V., and S.C.Balasubramanian (2009), Nutritive value of Indian
	Foods.NIN.ICMR.Hyderabad.
5	Mudambi S R and Rajagopal M V, (2008), Fundamentals of Foods, Nutrition & diet therapy by New Age
	International Publishers, New Delhi

Government of Karnataka Model Curriculum

Program Name	BSc Biotechnology		Semester	Fourth Sem
Course Title	Molecular Biology			
Course No.	BTC: 401	DSC -4T	No. of Theory Credits	4
Contact hours	56 hrs		Duration of ESA/Exam	2.5 Hours
Formative Asses	sment Marks 40		Summative Assessment Ma	arks 60

Course Pre-requisite (s):

Course Outcomes (COs): At the end of the course the student should be able to:

1. Study the advancements in molecular biology with latest trends.

2. Will acquire the knowledge of structure, functional relationship of proteins and nucleic acids.

3. Aware about the basic cellular processes such as transcription, translation, DNA replication and repair mechanisms.

Content	Hrs
Unit–I –	14 Hrs
DNA as genetic material, Replication and Repair: Experimental proof of DNA as genetic material (Griffith's, Avery-Mcleod-McCarty, Martha-Chase). Central dogma, Replication of DNA in prokaryotes and eukaryotes– semiconservative mode (Messelson and Stalh experiment), Theta, linear and rolling circle models. Enzymes and proteins involved in replication-DNA polymerases, helicases, gyrases, ligase, SSB proteins, RNAse H The replication complex: Pre-primming proteins, primosome, replisome, unique aspects of eukaryotic chromosome replication, Fidelity of replication. DNA damage and Repair mechanism: types of damage, photo reactivation, excision repair,	
Unit -II –	14 Hrs
Transcription and RNA processing: Transcription in prokaryotes- RNA polymerase, sigma factor, promoter, initiation, elongation and termination. Transcription in eukaryotes: Eukaryotic RNA polymerases, transcription factors, promoters, enhancers, mechanism of transcription initiation, promoter clearance, elongation and termination. RNA processing of pre-mRNA: 5' cap formation, polyadenylation, splicing. Processing of rRNA and tRNA.	
Unit -III –	14 Hrs
Translation: Genetic code and its characteristics, Wobble hypothesis. Translation- in prokaryotes and eukaryotes- ribosomes, enzymes and factors involved in translation. Activation of amino acids, aminoacyl tRNA synthetases. Mechanism of translation- initiation, elongation and termination of polypeptide chain. Fidelity of translation, Inhibitors of translation. Post translational modifications of proteins, Protein folding and targeting- to mitochondria and lysosomes.	
Unit –IV –	14 Hrs
Regulation of gene expression: Prokaryotic gene regulation- operon concept- regulation of <i>lac</i> operon and <i>trp</i> operon, attenuation control. Eukaryotic gene regulation- Activators, repressors binding to enhancers, coordinated control (tissue specific gene expression), DNA methylation, chromatin remodeling, Translational control of gene expression-ferritin mRNA regulation, RNAi- miRNA and siRNA.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)		Program Outcomes (POs)										
		2	3	4	5	6	7	8	9	10	11	12
Study the advancements in molecular biology with latest trends	√				✓							✓
Will acquire the knowledge of structure, functional relationship of proteins and nucleic acids					√	√						✓
Aware about the basic cellular processes such as transcription, translation, DNA replication and repair mechanisms	√				~				~			~

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks	
Formative Assessment Occasion / type	Weightage in Marks
Attendance	10
Seminar	10
Debates and Quiz	10
Test	10
Total	60 marks + 40 marks = 100 marks

Course Title	Molecular Biology		Practical Credits	2	
Course No.	BTC: 401	DSC-4P	Contact hours	48	
		Content			
1. Preparation	of DNA model				
2. Estimation of	of DNA by DPA metho	d			
3. Estimation of	of RNA by Orcinol met	hod			
4. DNA isolati	on from plant/ animal/	microbial sources			
5. Concentratio	5. Concentration and purity of isolated DNA samples				
6. Agarose gel electrophoresis of DNA					
7. Charts on- D	NA replication, transc	ription, translation, Ty	pes of DNA, RNA		

Practical assessment

Assessment				
Formative assessment		Summative Assessment		
Assessment Occasion / type	Weightage in Marks	Practical Exam	Total Marks	
Record	5			
Test	10	25		
Attendance	5	25	50	
Performance	5			
Total	25	25		

Ref	erences
1	Glick, B.R and Pasternak J.J (1998) Molecular biotechnology, Principles and application of
	recombinant DNA, Washington D.C. ASM press
2	Howe. C. (1995) Gene cloning and manipulation, Cambridge University Press, USA
3	Lewin, B., Gene VI New York, Oxford University Press
4	Rigby, P.W.J. (1987) Genetic Engineering Academic Press Inc. Florida, USA
5	Sambrook et al (2000) Molecular cloning Volumes I, II & III, Cold spring Harbor Laboratory Press
	New York, USA
6	Walker J. M. and Ging old, E.B. (1983) Molecular Biology & Biotechnology (Indian Edition) Royal
	Society of Chemistry U.K
7	Karp. G (2002) Cell & Molecular Biology, 3rdEdition, John Wiley & Sons; I

Government of Karnataka Model Curriculum

Program Name	BSc Biotechnology		Semester	Fourth Sem	
Course Title	Intellectual Prop	erty Rights			
Course Code		OE-4	No. of Theory Credits	3	
Contact hours	Lecture	42 h	Duration of ESA/Exam	2.5 Hours	
Contact nours	Practical	-			
Formative Assessment Marks 40			Summative Assessment M	arks 60	

Course Pre-requisite(s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Knowledge about need and scope of Intellectual property rights
- 2. Acquire knowledge about filing patents, process, and infringement
- 3. Knowledge about trademarks, industrial designs, and copyright

Content	42 Hrs
Unit-I - Introduction to Intellectual property rights (IPR):	14 Hrs
Genesis and scope. Types of Intellectual property rights - Patent, Trademarks, Copyright, Design, Trade secret, Geographical indicators, Plant variety protection. National and International agencies – WIPO, World Trade Organization (WTO), Trade-Related Aspects of Intellectual Property Rights (TRIPS), General Agreement on Tariffs and Trade (GATT).	
Unit -II - Patenting, process, and infringement	14 Hrs
Basics of patents - Types of patents; Patentable and Non-Patentable inventions, Process and Product patent. Indian Patent Act 1970; Recent amendments; Patent Cooperation Treaty (PCT) and implications. Process of patenting. Types of patent applications: Provisional and complete specifications; Concept of "prior art", patent databases (USPTO, EPO, India). Financial assistance, schemes, and grants for patenting. Patent infringement- Case studies on patents (Basmati rice)	
Unit -III - Trademarks, Copy right, industrial Designs	14 Hrs
Trademarks- types, Purpose and function of trademarks, trademark registration, Protection of trademark. Copy right- Fundamentals of copyright law, Originality of material, rights of reproduction, industrial Designs: Protection, Kind of protection provided by industrial design.	

Pedagogy

Summative assessment = 60 marks theory paper, End semester Exam duration: 2.5 hours					
Formative Assessment Occasion / type		Weightage in Marks			
Assignment		10			
Seminar		10			
Case studies		10			
Test		10			
Total		40 marks			
References					
1	Manish Arora. 2007. Universal's Guide to Patents Law (English) 4th Edition) -Publisher: Universal Law				
	Publishing House				
2	Kalyan C. Kankanala. 2012. Fundamentals of Intellectual Property. Asia Law House				
3	Ganguli, P. 2001. Intellectual Property Rights: Unleashing the knowledge economy. New Delhi: Tata				
	McGraw-Hill Pub				
4	World trade organization - http://www.wto.org				
5	World Intellectual Property organization – <u>www.wipo.int</u> Office of the controller general of Patents, Design &				
	Trademarks - www.ipindia.nic.in				

Model Theory Question Paper

B.Sc., Biotechnology (Basic /Hons.) Semester: III & IV (DSC and OE) (Formative Assessment Marks: 40; Summative Assessment Marks: 60)

Month and Year: Subject: Biotechnology

Title of the Paper:

Duration: 2.5 HrsMax marks: 60Instruction to the candidates: ------

Q. No	Questions	Marks allotted
1	Section A: Answer any FIVE questions	5×2=10
a.		
b.		
с.		
d.		
e.		
f.		
g.		
	Section B: Answer any FIVE questions	5 × 6=30
2		
3		
4		
5		
6		
7		
8		
9		
	Section C: Answer any TWO questions	2 × 10=20
10		
11		
12		
13		

Model Practical Examination Scheme

B.Sc., Biotechnology (Basic /Hons.) PRACTICAL: DSC-3P, BTC 301 III-SEMESTER (Biomolecules) (Formative Assessment Marks: 25; Summative Assessment Marks: 25)

Time: 3 Hrs	Max Marks: 25
 Q1. Any one of the following colorimetric estimations: a. Maltose by DNS method b. Proteins by Biuret method c. Amino acid by Ninhydrin Method 	12 M
 Scheme of Valuation Principle and procedure-2M Conducting experiment -6M Calculation/Tabular column /observation -2M Result-2M 	
 Q2. Circular paper chromatography for amino acids Scheme of Valuation Principle and procedure-2M Conducting experiment -4M Calculation and report -2M 	08M
Q3. Viva	05M

Model Practical Examination Scheme

B.Sc., Biotechnology (Basic /Hons.) PRACTICAL: DSC-4P, BTC 401 IV-SEMESTER (Molecular Biology) (Formative Assessment Marks: 25; Summative Assessment Marks: 25)

Time: 3 Hrs	Max Marks: 25
Q1. Any one of the following colorimetric estimations:a. DNA by DPA methodb. RNA by Orcinol method	12 M
 Scheme of Valuation Principle and procedure-2M Conducting experiment -6M Calculation/Tabular column /observation -2 Result-2M 	M
Q2.Comment on A, B, C and D	08M
Q3. Viva	05M
