Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301

e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY 🆑 OF MYSORE

Estd. 1916

No.AC2(S)/164/2021-22

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 16-02-2022

Notification

Sub:- Changes in the Syllabus & Scheme of Examination of Biotechnology (PG) with effective from the next Academic year 2022-23.

- **Ref:-** 1. Decision of Board of Studies in Biotechnology (PG) meeting held on 24-11-2021.
 - 2. Decision of the Faculty of Science & Technology Meeting held on 20-12-2021.
 - 3. Decision of the Academic Council meeting held on 23-12-2021.

The Board of studies in Biotechnology (PG) which met on 24-11-2021 has recommended to change the Syllabus & scheme of examination related to Biotechnology (PG) with effective from the next Academic year 2022-23.

The Faculty of Science & Technology and Academic Council at their meetings held on 20-12-2021 and 23-12-2021 respectively have also approved the above said proposal and it is hereby notified.

The Syllabus & Scheme of Examination is annexed herewith and the contents may be downloaded from the University Website i.e., <u>www.uni-mysore.ac.in</u>.

DRAFT APPROVED BY THE REGISTRAR

ademic) Mysore 570 005

<u>To:-</u>

- 1. The Registrar (Evaluation), University of Mysore, Mysuru.
- The Chairman, BOS/DOS, in Biotechnology (PG), Manasagangothri, Mysore.
- The Dean, Faculty of Science & Technology, DoS in Earth Science, MGM.
 The Director. Distance Education Processing Procesing Processing Processing Processing Processing Procesing Proce
- The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 5. The Director, PMEB, Manasagangothri, Mysore.
- Director, College Development Council, Manasagangothri, Mysore.
- The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 8. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 9. Office Copy.

Cell Biology and Cellular Signaling (SC) (Proposed for Revision)

Un	Sub-	Old syllabus	Proposed draft for revision				
its	Topi cs						
Ι	Topi c 1	Dynamic organization of the cell Ultra-structure of prokaryotic and eukaryotic cells; Universal features of cells; cell chemistry and biosynthesis: chemical organization of the cell;	Internal organization of the cells and cellular processes Internal organization of the cell; cell membranes: Structure of prokaryotic and eukaryotic cell membranes – models. Cellular organelles; Molecular mechanisms of membrane transport- active, passive, facilitated. Types of vesicles - transport and their functions.				
	Topi c 2	Internal organization of the cell-cell membranes: structure of cell membranes - models, intracellular organelles: endoplasmic reticulum and Golgi apparatus; Mitochondria, chloroplast, Lysosomes. Nucleus - Internal organization, Nucleosomes, Chromatin- structure and function, cellular cytoskeleton.	differentiation: stem cells, their differentiation into different cell types and organization into specialized tissues; Cell death: different modes of cell death and their regulation.				
II		Čellular processes Cell cycle and its regulation; cell division: mitosis, meiosis and cytokinesis.	Basics of Signal Transduction Extra-cellular matrix components : Cell junctions; Cell adhesion molecules; Hormones and their receptors; Types of cell signaling. Neurotransmission and its regulation.				
	Topi c II	cell differentiation: stem cells, their differentiation into different cell types and organization into specialized tissues;	Growth factors : EGF, VEGF, PDGF and their Signaling;				
	Topi c III	cell motility and migration; cell death: different modes of cell death and their regulation	G-protein coupled receptors (GPCR) signaling ; Second messengers in signal transduction pathways: cAMP, cGMP, calcium ions (Ca2 ⁺), and inositol triphosphate (IP ₃);				
	Торі	Molecular mechanisms of membrane	Receptor tyrosine kinases (RTK)				

	c IV	transport active, passive, facilitated. Types of vesicles - transport and their functions.	signaling ; Adapter proteins required for signal transmission.
III	Topi c I	Basics of Signal Transduction Extra-cellular matrix components, Cell junctions, Cell adhesion molecules, Hormones and their receptors, Cell surface receptors as reception of extra- cellular signals.	Signal transduction pathways in animals . MAP kinase cascade: SAP/JNK, p38, Wnt signaling, Jak/Stat, Smad, TGF β Signaling.
	Торі с II	Types of cell signaling, Growth factors- EGFR, VEGF, PDGF and their Signaling, adapter proteins required for signal transmission; signaling through G-protein coupled receptors.	MMPs and Cell Signalling, NF-κB signaling from cytoplasm to nucleus, Intracellular signaling in Development and Disease.
	Topi c III	Second messengers in signal transduction pathways: cAMP, cGMP, calcium ions (Ca2 ⁺), and inositol triphosphate (IP ₃) and ligand-gated ion channels; signaling through Receptor tyrosine kinases; neurotransmission and its regulation. Biochemistry of vision.	The end point of signal transduction, gene transcription; Nuclear receptors and transcription factors in signaling.
IV	Topi c I	Signaltransductionpathwaysinanimals:Phosphorylation cascades;MAPkinase,IntracellularsignalinginDevelopmentandDisease,SAP/JNK,p38,Wntsignaling,Jak/Stat,Smad,GSignaling,CytoskeletonAndCellSignalling,MMPsAndCellSignalling.	Plant-microbe interactions Bacterial and plant two-component signaling systems; bacterial chemotaxis and quorum sensing.
	Торі с II	Cross talks among cytoplasmic components, NF-κB signaling from cytoplasm to nucleus. The end point of signal transduction, gene transcription: Nuclear receptors and transcription factors in signaling.	pathogens like bacteria, fungi and viruses into host cells; alteration of host cell
	Topi c III	Host-parasite interaction: Bacterial and plant two-component signaling systems; bacterial chemotaxis and quorum sensing, Recognition and entry processes of different pathogens like bacteria, viruses into animal and plant host cells, alteration of host cell behavior by pathogens, pathogen-induced signaling pathways in plants- ROS, Jasmonate, SA-mediated pathways, resistance genes.	Host- pathogen interactions: Compatible- incompatible reactions- hypersensitive reaction, activation of resistance genes; pathogen-induced signaling pathways in plants- Oxidative burst, Reactive oxygen species (ROS), Nitric oxide, Jasmonate and Salicylic acid- mediated pathways.

Nanobiotechnology (SC) (Proposed for revision)

Preamble: The contents were rearranged among the Units to reduce repeatability.

Units	Sub-	Old syllabus	Proposed draft for revision			
	Topics	v	L.			
Ι	Торіс	Introduction and Fundamentals of	Introduction and Fundamentals of			
	ĺ	Nanobiotechnology.	nanobiotechnology			
		Concepts, historical perspective;	Concepts, historical perspective;			
		Nanoscale materials: Definition and	Nanoscale materials: Definition and			
		properties; Different formats of	properties; Different formats of			
		nanomaterial and applications; Cellular				
		nanostructure; nanopores; Biomolecular	nanopores; Biomolecular motors.			
		motors; Bio-inspired Nanostructures,				
		Quantum dots.				
	Торіс	Synthesis and characterization of	Synthesis and characterization of			
	2	different nanomaterials: Synthesis of	different nanomaterials: Synthesis			
		nanomaterials from plant, microbial and	of nanomaterials from plant,			
		animal cell sources. Characterization of	microbial and animal cell sources.			
		nanomaterials using Optical Microscopy,	Characterization of nanomaterials			
		Scanning Electron Microscopy,	using different Microscopy			
		Transmission Electron Microscopy,	techniques, Optical Absorption and			
		Atomic Force Microscopy, Scanning Tunneling Microscopy, Optical	Emission Spectroscopy, X-Ray diffraction.			
		Absorption and Emission Spectroscopy,	diffiaction.			
		Thermogravimetric Analysis, Differential				
		Scanning Calorimetry,				
		Thermomechanical Analysis, X-Ray,				
		neutron diffraction.				
		Applications of nanobiotechnology in				
		Plant and animal cell cultures, stem cell				
		culture and artificial organ synthesis.				
II		Nano-particles	Concepts of Nanoparticles: Basic			
		Concepts of Nanoparticles: Basic	structure of Nanoparticles- Kinetics			
		structure of Nanoparticles- Kinetics in	in nano-structured Materials.			
		nano-structured Materials- Zero dimensional, size and shape of				
		dimensional, size and shape of nanoparticles; one-dimensional and two-				
		dimensional nanostructures; clusters of				
		metals and semiconductors, bionano-				
		particles.				
	Торіс	Bionancomposites: Nano-particles and	Zero dimensional size and shape of			
	Í	Microorganisms; Microbial Synthesis of	nanoparticles, Quantum dots;			
		Nano- materials; Biological methods for	one-dimensional and two-			
		synthesis of nano-emulsions using	dimensional nanostructures and their			

		bacteria, fungi and Actinomycetes; Plant- based nanoparticle synthesis.	applications.
	Topic III	Nano-composite biomaterials – Fibres, devices and structures, Nano Bio- systems.	Nanocomposites: Nanocomposite biomaterials – Fibres, devices and structures.
III	Topic I	Applications of Nanobiotechnology Applications of Nanomedicine: Nanotechnology in diagnostic applications, materials used in Diagnostics and Therapeutics. Nanomaterials for catalysis, development and characterization of nanobiocatalysts, application of nano-scaffolds in synthesis, applications of nano- biocatalysis in the production of drugs and drug intermediates.	ApplicationsofNanobiotechnologyApplicationsofNanobiotechnologyinDiagnosticsandTherapeutics;Nanobiocatalystsintheproductionofdrugs.
	Topic II	Nano-films: Thin films; Colloidal nanostructures; Self-assembly, Nanovesicles; Nanospheres; nanocapsules and their characterization.	Nanostructures:Nanofilms;Nanovesicles;Nanospheres;Nanocapsules.Nanoparticles for diagnostics andimaging:Concepts of smart stimuliresponsivenanoparticles,implicationsin cancer therapy,nanodevicesforbiosensordevelopment.
	Topic III	Nanoparticles for drug delivery: Strategies for cellular internalization and long circulation, strategies for enhanced permeation through various anatomical barriers. Nanoparticles for diagnostics and imaging: Concepts of smart stimuli responsive nanoparticles, implications in cancer therapy, nanodevices for biosensor development.	
	Topic IV	Applications in Agriculture: Biogenic nanomaterials and their role in soil, water quality and plant protection; Smart nanoscale systems for targeted delivery of fertilizers, pesticides (nanocides);	Applications in Agriculture and Environment: Biogenic nanomaterials for Smart nanoscale systems for targeted delivery of fertilizers, pesticides (nanocides);

		Nanoremediation.	Nanoremediation.
IV	Topic I	Sustainable bionanotechnology: Application of industrial ecology to nanotechnology, Fate of nanomaterials in environment, environmental life cycle of nano-materials, environmental and health impacts of nano materials, Nano- materials in future - implications.	
	Topic II	Toxicity and safety of nanomaterials: Introduction to Safety of nanomaterials; Concept of Nanotoxicology – Models and assays for nanotoxicity assessment; Laboratory rodent studies. Ecotoxicologic studies: Methodology for Nanotoxicology - toxicity testing; Mechanism of nano-size particle toxicity; Reactive oxygen species mechanisms of NSP toxicity; Interactions between nanoparticles and living organisms.	Nanotoxicology: Mechanism of nanomaterial toxicity; Models and assays for nanotoxicity assessment. Interactions between nanomaterials and living organisms.

University of Mysore Department of Studies in Biotechnology Manasagangotri, Mysore – 570 006

Revised Scheme of Study (2022-23 Onwards)

Master's Degree Program in Biotechnology

Credits to be earned	76
Core papers	52 credits
Soft core	20 credits
Open elective paper*	04 credits

*Open elective shall be entirely from different discipline of study

Credit matrix for Master's Degree Program in Biotechnology

Credits to be earned	I	II	III	IV	Total Credits
Hard Core	16	16	12	08	52
Soft Core	04	04	04	08	20
Open elective	-	04	-	-	04
Total	20	24	16	16	76

I Semester

Paper	Title of the course	HC/SC/	L	Т	Р	Credits
Code		OE/etc				
	Bioanalytical Techniques	HC	3	1	0	4
	Microbiology	HC	3	1	0	4
	Biochemistry	HC	3	1	0	4
	Practical-1 (Bioanalytical Techniques,	HC	0	0	4	4
	Microbiology, Biochemistry)					
	SOFTCORE (Choose any O	NE/TWO fro	om the l	ist belov	v)	
	Molecular Genetics	SC	3	1	0	4
	Food & Environmental Biotechnology	SC	3	1	0	4
	Biostatistics & Bioinformatics	SC	3	1	0	4

II Semester

Paper Code	Title of the course	HC/SC/ OE/etc	L	Т	Р	Credits
	Molecular Biology	HC	3	1	0	4
	Genetic Engineering	HC	3	1	0	4
	Immunotechnology	HC	3	1	0	4
	Practical-2 (Molecular Biology, Genetic Engineering, Immunotechnology)	HC	0	0	4	4

	SOFTCORE (Choose any ONE from the list below)							
	Bioprocess Technology	SC	3	1	0	4		
	Cell Biology and Cellular Signalling	SC	3	1	0	4		
	OPEN ELECTIVE (Choose from other department)	OE				4		
16957	Biotechnology and its applications	OE	4	0	0	4		
	(For other discipline students)							

III Semester

Paper	Title of the course	HC/SC/	L	Т	Р	Credits
Code		OE/etc				
	Plant Biotechnology	HC	3	1	0	4
	Animal Biotechnology	HC	3	1	0	4
	Practical-3 (Plant and Animal Biotechnology, Bioprocess Technology)	HC	0	0	4	4
	SOFTCORE (Choose any O	NE/TWO fro	om the l	ist belov	~)	
	Molecular Diagnostics	SC	3	1	0	4
	Natural Products & Drug Discovery	SC	3	1	0	4
	Genomics & Proteomics	SC	3	1	0	4

IV Semester

Paper	Title of the course	HC/SC/	L	Т	Р	Credits	
Code		OE/etc					
	SOFTCORE (Choose any ONE from the list below)						
	Nanobiotechnology	SC	3	1	0	4	
	Molecular Plant Pathology	SC	3	1	0	4	
	Project work/Dissertation*	HC	0	2	6	8	

* Dissertation shall be allotted to the students in the III Semester itself.

Additional Softcores

Paper	Title of the course	HC/SC/	L	Т	Р	Credits
Code		OE/etc				
	Bioentrepreneurship	SC	3	1	0	4
	Seed Health and Diagnostics	SC	3	1	0	4
	Stem Cell & Regenerative Medicine	SC	3	1	0	4
	Cancer Biology	SC	3	1	0	4