Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301 e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY SOF MYSORE

Estd. 1916

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 20.07.2024

No.AC2(S)/55/2024-25

Notification

Sub:-Syllabus and Scheme of Examinations of Electronics (UG) programme (I & II Semester) from the Academic year 2024-25.

Ref:-1. Decision of Board of Studies in Electronics (UG) meeting held on 05-06-2024.

- 2. Decision of the Faculty of Science & Technology meeting held on 19-06-2024.
- 3. Decision of the Academic Council meeting held on 28.06.2024.

The Board of Studies in Electronics (UG) which met on 05-06-2024 has resolved to recommend & approved the Syllabus and Scheme of examinations of Electronics (UG) programme (I & II Semester) with effect from the Academic year 2024-25.

The Faculty of Science & Technology and Academic Council at their meetings held on 19-06-2024 and 29-06-2024 respectively has also approved the above said Syllabus and Scheme of examinations hence it is hereby notified.

The Syllabus and Scheme of Examinations content may be downloaded from the University Website i.e., www.uni-mysore.ac.in.

Registrar Registrar University of Mysore Mysore 9

To;

- 1. All the Principal of affiliated Colleges of University of Mysore, Mysore.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS in Electronics, Manasagangothri, Mysore.
- 4. The Dean, Faculty of Science & Technology, DOS in Mathematics, MGM.
- 5. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 6. The Director, PMEB, Manasagangothri, Mysore.
- 7. Director, College Development Council, Manasagangothri, Mysore.
- 8. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 9. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 10. Office Copy.

University

Curriculum for I and II Semester B.Sc. Degree with

Electronics

Based on SEP-2024 Regulations for the Academic Year

2024-25

Subject: Electronics

Submitted to

University of Mysore

Mysore, Karnataka

Preamble

The proposed curriculum content for B.Sc. Degree in Electronics as per SEP is intended to enable the graduates to respond to the current needs of the Industry and equip them with skills relevant for National and Global standards. The framework encourages innovation in teaching-learning process and appropriate assessment of student learning levels.

Introduction

B.Sc. Degree in Electronics is a program that develops a specialized skill set among the graduates to cater to the need of Industries. The curriculum is designed to help learners to analyze, appreciate, understand, and critically engage in learning the subject and also to provide better learning experience to the graduates. Apart from imparting disciplinary knowledge, the curriculum is aimed to equip the graduates with competencies like problem solving and analytical thinking which provide them professional competencies. To achieve the Course and Program Outcomes, the University encourages its faculties to make suitable pedagogical innovations, in addition to teaching/learning processes suggested in the curriculum.

Significance of Electronics

In recent years, Electronics has made unprecedented growth in terms of new technologies, new ideas, and principles. The research organizations and industries that work in the frontier area of Electronics are in need of highly skilled and scientifically oriented manpower. This is addressed by flexible, adaptive, and progressive training programs and a cohesive interaction among the Institutions, Universities, and Industries. The key areas of study and hands on training within the subject area of Electronics comprising of Semiconductor Devices, Circuit Analysis, Analog and Digital Circuit Design, Microprocessors and Microcontrollers, Embedded Systems, Knowledge on Coding/Programming in High Level Languages, Basic and Advanced Communication Systems like IoT, 4G, 5G, Satellite and Optical communication, Signal Processing, VLSI Technology, Basics of Control Systems and Robotics, etc.

Eligibility Criteria

A candidate who has passed two year Pre-University Examination with Science Subjects conducted by the Pre-University Board of Education, Government of Karnataka or any other examination considered equivalent by the University is eligible for admission to the first Semester of the UG program.

Programme Objectives

- To impart quality education to the students so that they acquire knowledge in Electronics.
- To provide students with the fundamental skills of different domains in Electronics to enhance the knowledge and understanding of key concepts of Electronics.
- To equip students with advanced Scientific and Technological capabilities for analyzing and tackling the issues and problems in the field of Electronics.
- To build mathematical and numerical background for the design and analysis of Electronic Circuits..
- To develop self and continuous learning and practice professional ethics for societal benefits.
- To provide students with skills that enables them to get employment in Industries or pursue higher studies or research assignments or turn as entrepreneurs.

Programme Outcomes

- Understand comprehensively the entire range of Electronic Devices and Circuits with the state-of art knowledge on advanced electronic systems.
- Identify, formulate and solve problems in the area of Electronics.
- Design and manage Electronic Systems or Processes that conforms to a given specification within ethical and economic constraints
- Ability to use Modern Tools/Techniques in solving problems in the field of Electronics.
- Function effectively as an individual and as a member in diverse teams and in multidisciplinary settings
- Excel in their professional endeavors through self-education.

Scheme of Evaluation

The Scheme of Examination, Evaluation, Passing Criteria, etc., are as per the Regulations of University of Mysore. The performance of the candidate in Theory, Practical, and Project Work are assessed based on three discrete components identified as C1, C2, and C3. The components C1 and C2 are the Continuous Assessments and C3 is the Semester End Examination. The Continuous Assessment C1 and C2 are to be conducted during 8th and 15th weeks of the Semester. The Final Examination for C3 is conducted during 18th to 20th week based on University notification.

C1 and C2 for Theory:

The C1 and C2 components of Courses are evaluated for 10 marks. The C3 component is evaluated for 80 marks through Semester End Examination. The duration of semester end Examination is 3 Hours. The scheme of evaluation of C1 and C2 is given in Table 1.

Activity	Marks	s Allotted
neuvity	C1	C2
Test	10	
Regularity/Seminar/ /Report on Data Sheets of Electronic Components, etc.		05
Assignment/Mini Project Work/Case Study/ Report on Industry Visit, etc.,		05
Total Marks	10	10

Table 1. Scheme of Evaluation for C1 and C2 in Theory cour
--

Scheme of Evaluation for Practical

In the practical, students are evaluated on the basis of skill, comprehension, and recording the results. The C1 and C2 components in practicals are evaluated for 05 marks. The C3 component which is the Semester End Examination is evaluated for 40 marks. The scheme of evaluation of C1 and C2 components is given in Table 2.

Activity	Marks Allotted		
Activity	C1	C2	
Test, Regularity and Performance in the Practical Sessions	05		
Laboratory Record		05	
Total Marks	05	05	

 Table 2. Scheme of Evaluation for C1 and C2 in Practical Courses

The scheme of evaluation of C3 component of practicals is given below.

- A candidate appearing for the Practical examination should submit a duly signed and certified practical record
- Each candidate has to perform given experiment in the specified duration for Forty marks. The evaluation scheme is given in Table 3.

 Table 3. Scheme of assessment for C3 component in Practical Examination

Division	Marks
Write up (Circuit Diagram/Program/Formula/ Tabular	20
Column/Expected Results, etc.)	
Conducting of experiments/Programme execution/Recording	15
of Results	
Viva	05
Total	40

Question Paper Pattern

PART-A

1. Answer any **TEN** questions. $2 \ge 10 = 20$

Short Answer questions of 2 marks each. Three questions from each unit.

Time: 3 Hours

PART-B

Answer any **THREE** questions. (Question No. 2 to 5) $3 \times 20 = 60$

Each main question of 20 marks with a split of questions carrying six, five, four, and three marks.

One question from each unit and the last question shall be from all three units.

Max. Marks: 80

I Semester

Program Name	BSc in Electronic	S	Semester	Semester First Semester	
Course Title	Fundamentals of	Fundamentals of Electronics			
Course Code:	DSC-ELE 1		No. of C	redits	3
Contact hours	45 Hours		Duration of Exam	1	3 Hours
Continuous As	sessment Marks	20	Semester End Examination I	Marks	80
 To acquire the knowledge of working principles of Electronic components To understand Network theorems with examples To know the classification and characteristics of semiconductor diodes Deliberate in detail the application of semiconductor diodes 					
<u>Course Outcomes</u> :					
Analyze basic networks using network theorems.					
> Demo	Demonstrate the working of analog circuits as per the specifications.				
> Explai	 Explain the principles and behavior of basic semiconductor devices 				
> Build	Build simple electronic circuits				

Contents	45 Hrs
Unit 1	15 Hrs

Resistors: Ohm's law, concept of resistance, classification of resistors, fixed – carbon composition, metal film & SMD resistors, Variable – Carbon composition & preset, color code, equivalent resistors in series and parallel combination, applications. **Capacitors:** Classification, types, fixed – Ceramic, polystyrene Electrolytic, & SMD capacitors, Variable – ganged & trimmer capacitors, equivalent capacitors in series and parallel combination and its applications. **Inductors:** classification, types, equivalent inductors in series and parallel combination and its applications. **Transformers:** Principle and Types: step-up, step-down, Isolation, Center taped. DC analysis of RC Circuit: Charging and discharging of Capacitor through Resistor and time constant, energy stored in Capacitor. **DC analysis of RL Circuit:** Growth and decay of current in series RL Circuit, time constant, and energy stored in Inductor. **AC Fundamentals:** Instantaneous voltage, peak voltage, RMS voltage, frequency, time period, with reference to sinusoidal waveform.

Unit 2	15 Hrs
AC Analysis: AC analysis of RC, RL circuits. Series and parallel resonant RLC	circuits -
Condition for resonance, Resonant frequency, Half power frequencies, BW, Qua	lity factor.
Kirchhoff's current law and Kirchhoff's voltage law, current and voltage divider law.	
Network theorems: Super position theorem - statement and explanation. Thevenin'	s theorem-
statement and explanation. Norton's theorem - statement and explanation, Maxim	um power
transfer theorem- statement and explanation.	
Unit 3	15 Hrs

PN-junction Diode: Introduction, Ideal and practical diodes, construction of PN-Junction, V-I characteristics. **Rectifiers:** Half-wave and Full-wave bridge rectifier, PIV, Ripple factor and efficiency. **Filters** - Operation of full wave rectifier with shunt capacitor filter. **Zener diode**: Introduction, construction of Zener diode, V-I Characteristics, Zener, and avalanche breakdown. Zener voltage regulator - load and line regulation. **Fixed voltage regulators:** 78xx and 79xx series. Block diagram of regulated DC power supply. **Wave shaping circuits-** Clippers and Clampers - Positive and Negative type.

Refe	erence Books
1	Robert L Boylestad, and Louis Nashelsky, "Electronic Devices & Circuit Theory," 11 th Edition, Pearson Education India, 2018.
2	Ravish R Singh, "Network Analysis and Synthesis," 1 st Edition, MGH, 2018.
3	Robert L Boylestad, "Introductory Circuit Analysis," 15 th edition, Pearson, 2015.
4	R. S. Sedha, "A Text book of Applied Electronics," 7 th edition., S. Chand and Company Ltd., 2011.
5	A. P. Malvino, and, David J Bates, "Electronics Principles," 7 th Edition, TMH, 2011.
6	David A. Bell, "Electronic Devices and Circuits," 5 th Edition, Oxford Uni. Press, 2015.

I Semester

Program	n Name	BSc in Electronics		Semester	First Sem	lester
Course	Title	Fundamentals of Elec	ctronics	Practical		
Course	Code	DSC-ELE 1P		No	of Credits	2
Continu	ious Assessi	ment Marks	10	Semester End Examination	n Marks	40
Note: N	Ainimum of	f 8 Experiments to be co	ompleted			
Cour	se Obiect	ives:				
<u>cour</u>	To gain pr	ectical knowledge in the	field of a	lectronic circuits through as	norimont	
			vina Nati	work theorems	perment	
×	Analyze El	lectronic circuits by apply	ying Net	work theorems		
~	Understand	the V-I characteristics (of Diodes	3		
\triangleright	Build simp	ole electronic circuits				
<u>Cour</u>	se Outcor	nes:				
\triangleright	Understand	d the working of Electro	nic Instru	uments		
\triangleright	Understand	d circuit reduction using	Network	theorems		
\triangleright	Understand	Understand the behavior of semiconductor devices				
\triangleright	Able to des	sign a simple power supp	oly			
1.	Study of cl	narging and discharging	of a capa	citor - determination of time	e constant	
2.	Study of se	eries and parallel LCR re	sonant ci	rcuits – determination of res	sonant frequ	ency,
	bandwidth	and Q- factor				
3.	Verificatio	n of Thevenin's and Nor	rton's Th	neorem		
4.	Verificatio	n of Maximum Power T	ransfer T	heorem		
5.	Study the V	V-I Characteristics of p-n	junction	diode- determination of resi	stances and	knee
6.	voltage. Study the V	V-I Characteristics Zener	diode –	determination of zener break	down volta	ge.
7.	Zener diod	le as a voltage regulator	(line and	load regulation)		0
8.	Half wave	rectifier – determination	of ripple	e factor with and without fil	ter.	
9.	Full wave	Bridge rectifier – determ	ination o	f ripple factor with and with	nout filter.	
10	. Study of cl	ipping and clamping circ	cuits.			
11	Design of I	DC regulated power supp	ly.			

II Semester

Program Name	B.Sc. in Electronics		Semester Second Semes			
Course Title Analog Electronic Circuits						
Course Code:	DSC-ELE II		No. of C	redits	3	
Contact hours	45 Hours		Duration of Exam	1	3 Hours	
Continuous Assess	Continuous Assessment Marks20Semester End Examination ive Assessment Marks80					
Course Object> Understand t> Understand t> Understand t> Understand t> Design electr	ives: he operation and ap and analyze the desi he characteristics ar onic circuits using o	plications ign of trans nd applicat op-amp	of transistors sistor Amplifiers and Oscillato ions of operational amplifiers	ors		
 Course Outcor Analyze bi Understand Understand Design an 	nes: asing techniques to d and Demonstrate t d and Demonstrate t d build the circuits	operate a he working he working using op-a	transistor. g of transistor amplifier circuit g of transistor oscillator circuits mp	S S		
		Contents			45 Hrs	
		Unit 1			15 Hrs	
Bipolar Junction T transistor, CE, CB a configuration. Regio Relations between o Thermal runaway, n Bias and Voltage Di	ransistor: Introduc and CC configurations of operation (α and β . Transiston weed for Stabilization vider Bias.	tion to trar ons , input active, cu or biasing on - stabili	nsistors- types, construction an and output characteristics of t off and saturation), Curre : Need for biasing, DC load ty and stability factor, Types	nd work a trans nt gain line a of bias	sistor in CE sistor in CE s α and β . nd Q point, sing - Fixed	
		Unit 2			15 Hrs	
Amplitiers: Definition and classification of amplifiers, single stage CE amplifier- construction, working, and frequency response. Application of transistor as switch. Multistage amplifiers:						

Introduction, Types of coupling, Two stage RC Coupled Amplifier and its frequency Response

(Gain and BW). **Power amplifiers:** Class A, Class B, and class C power amplifiers (Qualitative analysis) **Feedback in Amplifiers:** Concept of feedback, negative and positive feedback (expression for gain), and advantages of negative feedback. **Oscillators:** Introduction, Type of oscillators, Barkhausen criterion for sustained oscillations. Phase shift oscillator, Colpitt's oscillator, and crystal oscillator.

Unit 3

15 Hrs

OP-AMP: Introduction, Basics of Differential Amplifier, Block diagram of Op-Amp, Characteristics of an Ideal and Practical Op-Amp, Open and closed loop inverting and noninverting amplifiers. **Op-amp parameters** – input and output impedance, off-set voltage, CMRR, Slew Rate. Concept of Virtual Ground. **Applications of Op-Amps:** Adder, subtractor, Integrator, Differentiator and voltage follower. Comparator and Zero-crossing detector. Phase shift and Wein bridge oscillator, Astable multivibrator using Op-amp, Square wave &Triangular Wave Generators. **Filters**- Introduction to Active and passive filters, First Order active low pass and high pass Butterworth filter. Second Order active low pass and high pass Butterworth filter (mention only).

Refe	erence Books
1	Robert L Boylestad, and Louis Nashelsky, "Electronic Devices & Circuit Theory," 11 th Edition, Pearson Education India, 2018.
2	R. S. Sedha, "A Text book of Applied Electronics," 7 th edition., S. Chand and Company Ltd., 2011.
3	David A. Bell, "Electronic Devices and Circuits," 5th Edition, Oxford Uni. Press, 2015.
4	R. A. Gayakwad, "Op-Amps and Linear Integrated Circuit," 4 th Edition, Pearson Education, 2000.
5	David A. Bell, "Operational Amplifiers and Linear ICs," 3 rd Edition, Oxford University Press, 2011.
6	Robert L Boylestad, "Introductory Circuit Analysis," 15 th edition, Pearson, 2015.

II Semester

Program	n Name	BSc in Electronics		Semester Second Semest		emester
Course Title Analog Electronic Circuits Pr		actical				
Course	Code	DSC-ELE 1I P		No.	of Credits	2
Formati	Formative Assessment Marks 10 Summative Assessment Marks			40		
Note: N	Note: Minimum of 8 Experiments to be completed					
Cour	se Objecti	ves:				
\triangleright	Study the c	haracteristics of transist	or in CE	mode		
\triangleright	Understand	l the working of amplifie	ers			
\triangleright	Understand	l different applications o	f op-amp			
\triangleright	Design diff	erent signal conditioning	ng circuit	s like filters .		
<u>Cour</u>	se Outcon	nes:				
\blacktriangleright	Analyze pr	actical behavior of BJT				
\blacktriangleright	Design sim	ple circuits using op-am	р			
\triangleright	Understand	l the concept and workin	g of Filte	ers		
1.	Input outpu	tt characteristics of trans	istor in C	CE configuration – determina	ation transis	stor
	parameters					
2.	Single Stag	ge CE amplifier – determ	nination	of frequency response and b	andwidth	
3.	Colpitt's os	scillator (Using Transisto	or)– deter	rmination of output frequenc	ÿ	
4.	Phase shift	oscillator(Using Transis	stor) – de	termination of output freque	ncy.	
5.	Feedback a	mplifiers- determination	of gain	and bandwidth with and out	feedback.	
6.	Op-amp for	r DC amplifier in an Inv	erting an	nd Non-inverting amplifier n	node.	
7.	Op-amp Ac	lder & subtractor				
8.	To study th	e zero-crossing detector	and com	parator.		
9.	To study op	p-amp Integrator and Dif	fferentiat	or for the square wave input		
10	To design a	a Wien bridge oscillator	using an	op-amp.		
11	To design a	a Phase shift oscillator us	sing an o	p-amp.		
12	To design a	a Butterworth Low Pass	active Fi	lter (1st order).		
13	To design a	a Butterworth High Pass	active Fi	lter (1st order).		