Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301 e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY SOF MYSORE

Estd. 1916

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 20.07.2024

> Registrar Registrar University of Mysore

No.AC2(S)/55/2024-25

Notification

Sub:-Change in nomenclature and Syllabus for 'Earth Science' (UG) programme from the Academic year 2024-25.

Ref:- 1. Decision of Board of Studies in Earth Science (CB) meeting held on 06-06-2024.

- 2. Decision of the Faculty of Science & Technology meeting held on 19-06-2024.
- 3. Decision of the Academic Council meeting held on 28.06.2024.

The Board of Studies in Earth Science (CB) which met on 06-06-2024 has resolved to recommend and approved the change in nomenclature of the course from 'Earth Science' to 'Geology' and Syllabus with Scheme of examinations for I & II Semester Geology (UG) (B.Sc.) with effect from the Academic year 2024-25.

The Faculty of Science & Technology and Academic Council at their meetings held on 19-06-2024 and 28-06-2024 respectively has also approved the above said Syllabus and Scheme of examinations hence it is hereby notified.

The Syllabus and Scheme of Examinations content may be downloaded from the University Website i.e., www.uni-mysore.ac.in.

<u>To;</u>

- 1. All the Principal of affiliated Colleges of University of Mysore, Mysore.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS in Earth Science, Manasagangothri, Mysore.
- 4. The Dean, Faculty of Science & Technology, DOS in Mathematics, MGM.
- 5. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 6. The Director, PMEB, Manasagangothri, Mysore.
- 7. Director, College Development Council, Manasagangothri, Mysore.
- 8. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 9. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 10. Office Copy.

MODEL CURRICULUM (UNDER-GRADUATE)

DEGREE: BACHELOR OF SCIENCE (B.Sc.)IN GEOLOGY

SYLLABUS

(With New Regulations)

I Semester Theory Syllabus

Year - I	Course Code	LTP/Credits: 300		
Sem — I	Paper Title: GENERAL	Total Teaching		
	GEOLOGY	Hours: 48 Hrs.		
		(3hours/Week)		
Summative A	ssessment Marks (C ₃): 80 marks	Exam. Duration: 3		
		Hrs		
Formative As	sessment	Exam. Marks Total:		
C_1 Test = 10	80 + 20 = 100			
C ₂ Test/Assig	Marks			
Course	The study of this paper strengthens	students' knowledge		
learning	with respect to understanding the esse	ntials of the structural		
outcome:	dynamics of the earth.			
Broad	The course presents an understanding of the processes in			
contents of	action on the earth's surface and their impact on man and			
the course:	his institutions.			
Skills to be	The students will understand the origin of our solar system			
learned:	and planets, including earth. The stu	idents are exposed to		

the	interior	of	the	earth	and	be	able	to	appreciate	the
dyn	amics of	ear	th ev	olutio	n thro	ough	time	•		

Unit	Course Content	Hours
No		
UNIT	Introduction	16 Hrs.
1	Geology and it's perspectives. Pure and applied	
	branches of geology: scope and applications.	
	The universe and solar system: Origin of the	
	universe - big bang theory. Solar system. Members	
	of solar system – planets (Terrestrial and gaseous	
	planets), satellite, comets, asteroids, meteorite.	
	Earth in the solar system. Size, shape, mass, and	
	density of the earth.	
	Origin of the Earth – Gaseous hypothesis, Nebular	
	hypothesis, Planetesimal hypothesis, Tidal	
	hypothesis, Supernova hypothesis, Interstellar or	
	dust or meteoric hypothesis. Evolution of earth.	
	Age of the Earth: Geochronology; Absolute and	
	relative methods; (a) Relative Methods -	
	Sedimentation, Salinity method, varve chronology,	
	Rate of cooling of earth. (a) Radiometric dating,	
	atomic energy, decay scheme, half life, method - K-	
	Ar; Rb-Sr; U-Pb, Pb-Pb. Age of the earth.	

	A brief introduction on the Earth's system - Atmosphere, Lithosphere, Hydrosphere, Biosphere. Earth's internal structures and its composition. Evidence for the Earth's composition and	
	mineralogy – 1. Seismic data, 2. Density studies, 3.	
	Meteorites. Earth's internal layers - Crust, mantle	
	and core. Lithosphere, asthenosphere, mesosphere	
	and barysphere.	
UNIT	GEOMORPHOLOGY	16 Hrs.
2	Introduction: - Basic concepts of Geomorphology,	
	Definition and scope, Geomorphic agents,	
	Geomorphic processes; endogenetic (epigene) and	
	exogenetic (hypogene). Weathering - physical,	
	chemical, biological.	
	Soil - Definition, Formation, Types of soils. Soil	
	Profile.	
	Rivers and fluvial landforms: - Introduction,	
	Development of rivers - Drainage system and	
	patterns. Stages of rivers - Davi's concept; youth,	
	mature, old. Geologial actions: Erosion - hydraulic	
	action, abrasion, attrition, solution. Erosional	
	landforms - Potholes, V shaped valleys, gorges and	
	canyons, waterfalls and types, river meanders, ox-	
	bow lakes, river terraces, structural benches.	

	Transportation - suspension, solution. Deposition	
	and depositional landforms - alluvial fans and	
	cones, flood plains, natural levees, deltas, channel	
	deposits.	
	Wind and Aeolian landforms: Types of wind -	
	Breeze, Gale, Tempest, Cyclone. Geological action	
	of wind: Wind erosion - Deflation, abrasion,	
	attrition. Erosional features - mushroom rocks,	
	yardangs, Hamda, ventifacts, pedestal rocks, zeugen,	
	milletseed sands. Transportation - suspension,	
	saltation, traction. Deposition and depositional	
	landforms - Sand dunes and types, Loess.	
	Glaciers and glacial landforms:- Types of glaciers	
	– Mountain or valley glaciers, Piedmont glaciers,	
	continental ice-sheets or ice caps. Geological action	
	of glaciers.	
UNIT	GEODYNAMICS	16 Hrs.
3	Introduction to Geodynamics. Origin of oceans,	
	continents and mountains. Concepts and theories of	
	isostasy. Concept of palaeomagnetism, application	
	of palaeomagnetism. Continental drift. Sea floor	
	spreading. Concept of plate tectonics. Nature and	
	types of plate margins, Midoceanic ridges and	
	trenches. Origin and distribution of Island arcs.	

Earthquakes: definition, Elements of an earthquake, types of earthquake waves, scale based on intensity and magnitude, seismographs and seismometers, causes and prediction of earthquake, Effects of earthquake, Seismic zones of India.

Volcanoes: A typical volcano parts, volcanic activity, types of volcanoes, composition of lava, distribution of volcanoes. Products of a volcano. Volcanic landforms; depressed landforms: Volcanic cone (Cinder Cone), Volcanic craters, Calderas (Caldera Lake). Landforms due to the accumulation of lava: Volcanic mountains, Volcanic plateaus, Volcanic plains, Volcanic necks.

Groundwater:of Meaning and components groundwater. Geological action of groundwater: Erosion and erosional landforms (lapis, solution holes and associated features, poljes, caves and valleys of karst topography, caverns: natural bridges). Transportation; solution. Depositional work; concretions, stalactites and stalagmites, Oceans and Coastal landforms: Topography of

ocean floor – continental slope, shelf, abyssal zone, mid-oceanic ridges.

Suggested	1. Duff, P. M. D., & Duff, D. (Eds.). (1993).
Readings:	Holmes' principles of physical geology. Taylor &
	Francis.
	2. Emiliani, C. (1992). Planet earth: cosmology,
	geology, and the evolution of life and
	environment.Cambridge University Press.
	3. Gross, M. G. (1977). Oceanography: A view of
	the earth.
	4. Brian, J. S., Barbara, W.M., 2010. The Blue
	Planet: An Introduction to Earth System Science,
	3rdEdition, Wiley.
	5. Ernst, W.G., 2000. Earth Systems: Processes and
	Issues, Cambridge University Press.
	6. Sarah, E., Cornell, I., Prentice, C., Joanna, I.H.,
	Catherine, J.D., 2012. Understanding the Earth
	System Global Change Science for Application,
	Academic Press.
	7. Jacobson, M., Charlson, R., Rodhe, H., Orians,
	G., 2000.Earth System Science: From
	Biogeochemical Cycles to Global Changes,
	Elsevier.
	8. Ehlers, E., Krafft, T., 2006. Earth System
	Science in the Anthropocene, Springer.
	9. Jacobson, M. C., Charlson, R. J., Rodhe, H.,
	and Orians, G. H., 2000, Earth System Science:

San Diego, CA, Academic Press, 523 p., ISBN
0-12-379370-X
10. The Earth System, Lee R. Kump, James F.
Kasting, and Robert G Crane; Prentice Hall, 2nd
Ed.,2004
11. Principles of Geology – ArthurHolmes
12. Physical Geology – Longwell&Flient
13. General Geology – Radhakrishnan.Y
14. The Dynamic Earth – Wyllie.P.J
15. The way earth works - Wyllie.P.J
16. Physical Geology –Springfield
17. Geomorphology —Thornbury
18. Geomorphology –Davies
19. Physical Geography Today – Muller &Oberlander

First semester Practical syllabus

Year - I	Course Code	LTP/Credits: 004/2
Sem — I	Paper Title: Maps, Soil and Field	Total Teaching
	Visit	Hours:64 Hrs. (4
		hours /Week)
Summative A	Exam. Duration: 3	
		Hrs
Formative As	Exam. Marks	
C_1 Test = 05	Total:	
C ₂ Test/Assig		

	40 + 10 = 50
	Marks
1. Introduction to maps. Study of maps. Types of maps. Types of scale.	1 practical
2. Reading topographical maps of the Survey of India; Detailed study of topographic sheets	2 practical
3. Preparation of topographical	1 practical
4. Identification of drainage	2 practical
patterns	2 practicals
5. Preparation of LU/LC maps.	2 practicals
6. Study of soil profile and determination of soil texture	3 practicals
7. Study of major geomorphic features and their relationships with outcrops through physiographic models and using lens	1 pratical
stereoscope and mirror stereoscope.	
8. Field visit to a place of geological/geomorphological interest.	

MODEL QUESTION PAPER FOR C_3

First Semester

CORE COURSE: GDSC/P- 1: PRACTICALS-1

Time: 3 Hour

Marks: 40

Max.

Determination of the soil texture.	5 X 1 = 5
	mark
Interpretation and description of a part of a toposheet as regard to topography, slope and drainage.	
Interpretation and description of a physiographic model.	5 X 1 = 5 mark
Interpretation and description of geomorphic features using lens/mirror stereoscope.	5 X 2 = 10 mark
Preparation of Land use/Land cover map with report	10 X 1 = 10 mark
Record	5 mark
Viva-Voce	5 mark

II Semester Theory Syllabus

Year - I	Course Code	LTP/Credits: 300
Sem — II	Paper Title:CRYSTALLOGRAPHY AND MINERALOGY	Total Teaching Hours: 48 Hrs. (3 hours/Week)
Summative Assessment Marks (C ₃₎ : 80 marks		Exam. Duration: 3 Hrs
Formative A	ssessment	Exam. Marks Total:

C_1 Test = 10 marks	80 + 20 = 100
C_2 Test/Assignment/ Tour Report = 10 marks	Marks

Course	Studying the basics of mineralogy and crystallography helps					
learning	in understanding and building the overall knowledge in					
outcome:	Geology.					
Broad	The course deals with the study of minerals, their chemistry					
contents of	and identification in hand specimen. Further, it also deals					
the course:	with the study of crystals with respect to their morphology,					
	symmetry and the normal crystal classes					
Skills to be	The students will be able to identify common rock-forming					
learned:	minerals in hand specimens as well as in thin sections.					
	Besides, they will familiarise themselves with Bavarias					
	crystal lattice and crystal systems.					

Unit No	Course Content	Hours
UNIT 1	CRYSTALLOGRAPHY	16 Hrs.
	Introduction. Definition of a crystal. Elementary	
	ideas about crystal structure (crystalline,	
	cryptocrystalline, Amorphous). Crystal elements;	
	faces, edges and Solid angle. Euler's formula.	
	Interfacial angles and its measurement (Contact	
	Goniameter and its use). Crystallographic axes;	

	classification of crystals based on geometrical constants. Laws of crystallography; the law of constancy of interfacial angles, the law of symmetry; Plane, axis and centre of symmetry , Grade of symmetry- classification of crystals based on grade of symmetry. The law of rational indices- crystallographic parameters and crystallographic notation; Weiss notation, Miller's Indices. Crystal form. Study of forms of normal classes (Holohedral)- Isometric, Tetragonal, Hexagonal, Orthorhombic, Monoclinic, Triclinic .	
UNIT 2	MINERALOGY Introduction. Definition of a mineral. Formation of minerals. Physical properties of minerals. Characters depending upon the state of aggregation; habit, form. Characters depending upon cohesion and elasticity; cleavage, fracture, hardness, tenacity. Characters depending upon light; colour, streak, luster, diaphaneity, iridescence, Opalescence, Luminescence, Fluorescence, Tarnish. Characters	16 Hrs.

	depending upon electricity (conductivity, pyro, piezo) and magnetism (para and diamagnetism). Specific gravity and methods of determining specific gravity; Walker's steel yard. Chemical Mineralogy; Bonding of molecules — Ionic, Covalent, Metallic, Vander Walls. Isomorphism, Polymorphism and Pseudomorphism.	
UNIT 3	OPTICAL AND DESCRIPTIVE	16 Hrs.
	MINERALOGY	
	Nature of light, nomenclature of wave theory,	
	Ordinary and polarized light, isotropic and	
	anisotropic minerals, their wave surfaces and wave	
	fronts, Reflection and refraction of light, Refractive	
	index, critical angle, total internal reflection,	
	Double refraction (Uniaxial, Biaxial mineras), Nicol	
	Prism its construction and working. Behaviour of	
	light under crossed nicols with mineral section.	
	Optical properties under microscope: Petrological	
	microscope- its parts and functioning.	
	Optical properties of minerals: Mica plate, Gypsum	
	plate and Quartz wedge (construction and use).	
	Pleochroism (Dichroism, Trichroism), Interference	

Interference colour. Extinction- Straight, inclined,	
undulose and symmetrical extinctions. Extinction	
angle.	
Classification of minerals based on chemical	
composition. Silicates: abundance in the crust,	
classification of silicates, based on structures -	
Neso, Soro, Cyclo, Ino, Phyllo, Tectosilicates.	
Chemical composition, physical, optical properties,	
mode of occurrence and uses of the following	
group of minerals: - Olivine group, Pyroxene	
group, Amphibole group, Mica group, Feldspar	
group, Quartz group and Garnet group.	

Suggested	1. James D Dana. A Textbook of minerology, John					
Readings:	Wiley and Sons					
	2. Verma, P K (2010), Optical mineralogy. Ane books					
	Pvt.Ltd.Buerger, Elementary crystallography					
	3. Ram S. Sharma and Anurag Sharma (2013)					
	Crystallography and Mineralogy -					
	4. Concepts and Methods. Text Book Series,					
	Geological Society of India, Bangalore					
	5. Dana, E.S. and Ford, W.E., (2002) A textbook of					
	Mineralogy (Reprints).					
	6. Flint, Y., (1975) Essential of crystallography, Mir					
	Publishers.					

7. Phillips, F.C., (1963) An introduction to
crystallography. Wiley, New York.
8. Berry, L.G., Mason, B. and Dietrich, R.V., (1982)
Mineralogy. CBS Publ.
9. Read, H.H., (1968) Rutley's Element of Mineralogy
(Rev. Ed.). Thomas Murby and Co.
10. Berry and Mason, (1961) Mineralogy. W.H.
Freeman & Co.
11. Kerr, B.F., (1995) Optical Mineralogy 5th Ed.
McGraw Hill, New York.
12. Deer, Howie and Zussman (1996) Introduction to
Rock forming Minerals, Pearson
13. Wahlstrom E.E. (1971) Optical crystallography,
John Wiley and sons.
14. R.N. Hota (2012) Practical approach to Mineralogy
and Crystallography, CBS Publications &
Distributions.
15. Perkin D. (2010) Mineralogy, Pearson.

Second semester practical syllabus

Year - I	Course Code	LTP/Credits: 004/2
Sem — II	Paper Title: Crystallography and	Total Teaching
	Mineralogy	Hours: 64 Hrs.

	(4hours/Week)
Summative Assessment Marks (C3): 40 marks	Exam. Duration: 3
	Hrs
Formative Assessment	Exam. Marks Total:
C_1 Test = 05 Marks	40 + 10 = 50
C_2 Test/Assignment/ Tour Report = 05 Marks	Marks
1. Study of crystals based on geometrical constants.Measurement of interfacial angle using contact goniometer and Verification of Euler's theorem	1 practical
2. Study of holohedral forms of six crystal system	4 practical
3. Study of Physical properties of rock forming minerals (list-given below)	4 practicals
4. Study of Physical properties of rock ore minerals (list-given below)	2practicals
 5. Study of the optical properties of important rock forming minerals using polarizing microscope: Quartz, Plagioclase, Orthoclase, Microcline, Biotite, Hornblende, Augite, Hypersthene, Olivine, Garnet, Calcite. 	2 practical

6. Visit	to	field	to	study	the	mode	of	1 practical
occur	renc	e of n	nine	rals.				

Non-silicates					
Non-Metal	llic minerals	Metallic minerals			
Sulphates	Barite, Gypsum	Sulphides	Chalcopyrite, Galena Realgar, Orpiment, Spalerite (& dodecahedral), Cinnabar, Pyrite, Stibnite		
Oxides	Corundum	Oxides	Haematite (&botryoidal, micaceous), Magnetite, Pyrolusite, Chromite, Bauxite, Psilomelane		
Carbonates	Dolomite, Calcite, Magnesite	Carbonates	Malachite, Azurite		
Phosphates	Monazite	Halides	Rock salt (Halite), Fluorite		

Group	Mineral Name
Olivine Group	Olivine
Garnet Group	Garnet
Al ₂ SiO ₅ Group	Andalusite, Sillimanite, Kyanite, Staurolite
Zircon Group	Zircon
Epidote Group	-
Beryl Group	Beryl
	Group Olivine Group Garnet Group Al ₂ SiO ₅ Group Zircon Group Epidote Group Beryl Group

			Tourmaline	Tourmaline
Inosilicates	Single Silicates	Chain	Pyroxene Group	Augite, Hypersthene
	Double Silicates	Chain	Amphibole Group	Actinolite, Hornblende
Phyllosilicates			Serpentine Group	Serpentine, Asbestos
			Clay Minerals Group	Talc, Kaolin
			Mica Group	Muscovite, Biotite, Phlogopite, Vemiculite
Tectosilicates			Quartz Group	Quartz
			Feldspar Group	Orthoclase, Plagioclase, Microcline
			Feldspathoid Group	Nepheline, Sodalite
			Zeolite Group	Zeolite

MODEL QUESTION PAPER FOR C_3

I B.Sc., II Semester Examination

Paper Title:

Time: 3 Hour

Marks: 40

1	Verification of Euler's formula	1 X 2 = 2 Marks		
2	Identification of the crystal model as to its system based on geometrical constants	2 X 2=4 marks		
3	Identification of the crystal model as to its holohedral system based on symmetrical Characters	1 X 5 = 5marks		
4	Identification of silicate group of minerals based on physical properties	4 X 2 = 8 marks		
5	Identification of non-silicate group of minerals based on physical properties.	$\begin{array}{rcrcrcc} 2 & X & 3 & = & 6 \\ marks \end{array}$		
6	Identification of a mineral based on optical properties.	1 X 5 = 5 mark		
7	Record	5 Marks		
8	Viva-Voce	5 marks		

MODEL QUESTION PAPER FOR C_3

I B.Sc., Examination

GEOLOGY

Paper Title:

Time: 3 Hour

1.
 2.
 3.
 4.
 5.
 6.

•

Max. Marks: 80

SECTION : A

Answer any FIVE questions	5 X 2 =
10 Mark	

SECTION : B

	Answer any SIX questions	$6 \ge 5 = 30$
Mark.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		

SECTION : C

	Answer any Four questions	10 X 4 = 40
Mark		

- 15.