

No: AC10/759/2019-20

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005. Dated: 05.07.2019.

NOTIFICATION

Sub: Minor modifications in the Syllabus Clinical Embryology and Pre-Implantation genetics from the academic year 2019-20-Reg.

Ref: 1.Decision of the Faculty of Science and Technology Meeting held on 01.04.2019.

2. Decision of the Academic Council meeting held on 07.06.2019.

The Board of Studies in Clinical Embryology and Pre-Implantation genetics (PG) which met on 31.12.2018 has resolved and recommended to minor modifications in the Syllabus of Clinical Embryology and Pre-Implantation genetics (PG) from the academic year 2019-20.

The Faculty of Science & Technology and the Academic Council at their meetings held on 01.04.2019 and 07.06.2019 respectively have also approved the above proposal.

The contents are uploaded in the University Website i.e., www.unimysore.ac.in, the concerned may be download it.

DRAFT APPROVED BY THE REGISTRAR.

DEPUTY REGISTRAR (ACADEMIC) UNIVERSITY OF MYSORE, &

MYSORE.

To:

1. Registrar (Evaluation), University of Mysore, Mysuru.

The Dean, Faculty of Science Department of Studies in Zoology, Manasagangotri, Mysuru. 2.

The Director, Asia Pacific Institute of Embryology, No. 149, 30ft Road, Nandi Circle, Dattagali 3. 3rd Stage, Mysore-570009.

4. The Director, PMEB, Pareeksha Bhavan, University of Mysore, Mysuru.

The Director, College Development Council, MoulyaBhavan, Manasagangotri, Mysuru. 5.

6. The Deputy Registrar/ Assistant Registrar/ Superintendent, AB and EB, University of Mysore, Mysuru.

The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru. 7.

8. Office Copy.

New Syllabus MSc in Clinical Embryology and Preimplantation Genetics Regulations and Syllabus

I Semester (18 Credits)-Proposed Changes

SI.	Code	Title of the Paper	Credit	patte	ern	Total
No.			L	Т	Р	Credits
1		Introduction to Embryology	2	0	0	2
		Introduction to Reproductive system				
2		Introduction to infertility	2	0	0	2
3		Introduction to Embryology	0	0	6	6
		Introduction to embryology				
		laboratory				
4		Standard Operating Protocols in the	0	0	8	8
		IVF and cell culture laboratory.				
		Andrology laboratory Techniques				
`			4	0	14	18

II Semester (20 credits)-PROPOSED CHANGES

SI.	Code	Title of the Paper	Credi	t patter	'n	Total
No.			L	Т	Р	Credits
1		Principles of genetics and Reproductive Endocrinology	2	0	0	2
2		Assisted Reproduction	2	0	0	2
3		Human Andrology Clinical Embryology Techniques	0	0	8	8
4		Clinical Embryology Techniques Cryopreservation Techniques	0	0	8	8
			4	0	16	20

III Semester (20 credits)-PROPOSED CHANGES

SI.	Code	Title of the Paper	Credi	t patter	'n	Total
No.			L	Т	Р	Credits
1		Research methodology and	2	0	0	2
		Preimplantation Genetic Diagnosis				
2		Principles of Cryopreservation	2	0	0	2
3		Micromanipulation	0	0	8	8
		Intracytoplasmic sperm injection				
		(ICSI)				
4		cryopreservation techniques	0	0	8	8
		Micromanipulation & Embryo				
		Biopsy Techniques				
			4	0	16	20

IV Semester (20 credits)-NO CHANGES

SI.	Code	Title of the Paper	Credit	patter	n	Total
No.			L	T	Р	Credits
1		New developments in ART	2	0	0	2
2		Regulation and ethics in assisted reproduction	2	0	0	2
3		Research Seminar	0	4	0	4
4		Project Work	0	0	10	10
			4	4	10	18

I Semester Theory Paper 1: Introduction to embryology 2 Credits

Introduction to Reproductive System 2 Credits

Lecture (2 Credits 2 hours / week)

Existing syllabus	Proposed Changes		
Introduction to Embryology	Introduction to Reproductive System		
Primordial germ cells. Gonadogenesis, Male	Introduction to Evolution, Cell biology,		
Reproductive system and male anatomy;	Anatomy Physiology, Genetics and		
development of testes; spermatogenesis and	development of vertebrates		
spermiogenesis	Embryology; history and concepts		
Female reproductive system and female	Primordial germ cells. Gonadogenesis;		
anatomy: development of ovary, oogenesis,	Female reproductive system and female		
folliculogenesis, and oocyte development,	anatomy: development of ovary, oogenesis,		
Fertilization and zygote formation, gamete	folliculogenesis, and oocyte development,		
transport, early development of embryos,	gamete transport, Fertilization, zygote formation		
implantation.	& Cleavage, early development of embryos,		
Andrology: Seminal plasma and its composition,	Blastulation & gastrulation, Germ layer		
Biochemical analysis of semen sample,	formation, implantation.		
importance of fructose determination,	Male Reproductive system and male anatomy;		
microbiological analysis of semen sample, sperm	development of testes; spermatogenesis and		
agglutination and antisperm antibodies,	spermiogenesis		
Structure and function of spermatozoa,	Seminal plasma and its composition, Biochemical		
comprehensive semen assessment, classification	analysis of semen sample, microbiological		
of semen sample morphology assessment,	analysis of semen sample, Antisperm antibodies,		
motility assessment and grading, semen function	Structure and function of spermatozoa,		
tests- sperm survival test, sperm DNA	Preparation of embryology lab and personnel for		
fragmentation test, Different methods of	oocyte retrieval, selection of culture media and		
separation of motile spermatozoa; swim up and	disposables, Equilibration of culture tubes and		
gradient methods	dishes, composition of culture media, use of		
Preparation of embryology lab and personnel for	culture media for different purposes,		
oocyte retrieval, selection of culture media and	Insemination procedures, Denudation and		
disposables, Equilibration of culture tubes and	fertilization check, zygote, cleavage and		
dishes, composition of culture media, use of	blastocyst development assessment, Embryo		

culture media for different purposes,	Transfer	
Insemination procedures, Denudation and		
fertilization check, zygote, cleavage and		
blastocyst development assessment, Embryo		
Transfer		

Theory Paper 2: Introduction to Infertility

Lecture (2 Credits 2 hours / week)

2 Credits

Existing	Proposed changes-No changes
Incidence of infertility, Causes of male infertility;	Reproductive health, Infertility; definition,
anatomical causes and varicocele, hormonal	history, Incidence of infertility; global fertility
causes, genetic causes, environmental causes	rates and declining birth rates, society and
Female infertility: Anatomical causes, hormonal	infertility. Age and declining fertility, Causes of
causes, polycystic ovary syndrome, anovulation	male infertility; anatomical causes and
Investigation of male: Physical examination,	varicocele, hormonal causes, genetic causes,
semen examination and hormonal assessment	environmental causes
Investigation of the female: Physical	Female infertility: Anatomical causes, hormonal
examination, hormonal evaluation	causes, polycystic ovary syndrome, anovulation
	Investigation of male: Physical examination,
	semen examination and hormonal assessment
	Investigation of the female: Physical
	examination, hormonal evaluation

Introduction to embryology

Introduction to Embryology Laboratory Techniques

Practical Paper 1: (6 Credits, 12 hours / week)

Existing	Proposed Changes
Introduction to embryology	Introduction to Embryology Laboratory
	Techniques
Microscopy: Phase contrast microscope, stereo	Embryology Laboratory: Standard Operating

zoom microscope and inverted microscope Female anatomy model; male anatomy model; Sheep testes dissection and processing, identification of stages of sperm development, identification of sperm and its morphology Sheep Ovary dissection: identification of follicles on the ovary, isolation of oocyte cumulus complex and separation of oocytes, identification of granulosa cells, cumulus cells, corona cells and zona pellucida.

Protocols (SOPS); Various SOPS and work instructions in the embryology lab, Functions of IVF Centre and the laboratory, Personnel involved and workflow, Maintenance of lab and monitoring equipment, Personnel proficiency, inventory management, Quality control and Quality assurance.

Familiarization and calibration of digital thermometer, Temperature monitoring of incubators, Laminar Flow, heating block and refrigerator, Familiarization of CO2 analyzer and CO2 measurement, Preparation of 70% alcohol, cleaning of CO2 incubator, Laminar Flow, Bench top incubators, Monitoring of CO2 and Triple gas cylinder pressures, Monitoring the level of liquid nitrogen in the liquid nitrogen Dewar of sperm and embryo storage tank Good laboratory practice, Tissue culture laboratory, Designing and layout of embryology laboratory, Requirements of embryology laboratory, clean air system, Embryology lab equipment, disposables, culture media used in the laboratory Sterilization methods; autoclave, dry heat

Sterilization methods; autoclave, dry heat sterilization, gas sterilization and gamma radiation, Handling of hazardous and biological samples, Cleaning and maintenance of embryology laboratory, Common lab contaminants-bacteria, fungi and viruses; identification of bacilli and cocci, Gram stain Tissue culture techniques, culture media and formulation, familiarization of embryology lab

equipment, embryology lab attire, sterile practice in the embryology laboratory

Microscopy: Phase contrast microscope, stereo zoom microscope and inverted microscope

Sheep Ovary dissection: identification of follicles on the ovary, isolation of oocyte cumulus complex and separation of oocytes, identification of granulosa cells, cumulus cells, corona cells and zona pellucida.

Mitosis, Meiosis, Identification of cells in stained blood smear, blood grouping

Standard Operating Protocols in the IVF and cell culture laboratory.

Andrology Laboratory Techniques

Practical Paper 2 (8 Credits 12 hours / week)

8 credits (12h/week)

Existing	Proposed changes
Standard Operating Protocols in the IVF and cell	Andrology Laboratory Techniques (shifted from
culture laboratory.	Semester 2)
What are SOPS; Various SOPS and work	Male anatomy model; Sheep testes dissection
instructions in the embryology lab, Function of	and processing, identification of stages of
IVF Centre, Personnel involved and workflow,	sperm development, identification of sperm
Maintenance of lab and monitoring equipment,	and its morphology
Personnel proficiency, inventory management,	Semen analysis; normospermic and
Quality control and Quality assurance.	oligospermic semen samples, calculation of
Familiarization of digital thermometer,	spermatozoa concentration, motility grading,
calibration of digital thermometer	morphology assessment in stained and neat
Temperature monitoring of incubators, Laminar	semen samples, assessment of viability,
Flow, heating block and refrigerator	examination for sperm agglutination,
Familiarization of CO2 analyzer and CO2	differentiation of immature spermatogenic cells
measurement	and pus cells (peroxidase test), Fructose test to

Preparation of 70% alcohol, cleaning of CO2 incubator, Laminar Flow, Bench top incubators, Monitoring of CO2 and Triple gas cylinder pressures

Monitoring the level of liquid nitrogen in the liquid nitrogen Dewar of sperm and embryo storage tank

Good laboratory practice, Tissue culture laboratory, Designing and layout of embryology laboratory, Requirements of embryology laboratory, clean air system, Embryology lab equipment, disposables, culture media used in the laboratory

Sterilization methods; autoclave, dry heat sterilization, gas sterilization and gamma radiation

Handling of hazardous and biological samples

Cleaning and maintenance of embryology
laboratory

Common lab contaminants-bacteria, fungi and viruses; identification of bacilli and cocci, Gram stain

Tissue culture techniques, culture media and formulation, familiarization of embryology lab equipment, embryology lab attire, sterile practice in the embryology laboratory

rule out obstructive azoospermia, Tests for antisperm antibodies (Mar test), Sperm DNA fragmentation test, HOST test, Sperm survival test, Hyaluronan binding assay Sperm separation methods; classical swim up method, standard swim up method, gradient method, SEPD method
Semen Cryopreservation

Lecture (2 Credits, 2 hours / week)

Existing

Mitosis, meiosis, Nondisjunction, Molecular basis of inheritance, DNA ,chromosomes, autosomes and sex chromosomes, Karyotype, Indications for performing a chromosome analysis, Inherited and non-inherited chromosome abnormalities, trisomy, monosomy ,numerical chromosome abnormalities, translocation, deletion, structural chromosome abnormalities, sex chromosome abnormalities, , Reasons for analysing for chromosomal diseases, mutation polymorphism, point mutations, Gene deletion, primer, probe, Genetic counselling, Mendelian inheritance: autosomal recessive, autosomal dominant, X-linked recessive, Atypical Mendelian inheritance: mitochondrial inheritance, dynamic mutations, genomic imprinting, somatic mutation

General principles of endocrinology- Hormones and their release; Techniques for studying hormones-Immunoassays, The Hypothalamic pituitary system, Thyroid hormones, Physiology of reproductive hormones, Hirsutism, Primary and secondary amenorrhea

Hormonal regulation of spermatogenesis, testicular function and sex differentiation

Hormonal regulation of ovarian cycles & luteal phase defect, implantation and pregnancy

Mendelian Inheritance – Autosomal Recessive,
Autosomal Dominant
Atypical Mendelian Inheritance: Mitochondrial
Inheritance; X-linked Recessive
Molecular Basis of Inheritance - DNA;
Cell Cycle - Mitosis; Meiosis; Nondisjunction
Chromosomes; Autosomes and Sex
Chromosomes
Karyotyping

Proposed changes- (just re-arrangement)

Indications for Performing a Chromosome Analysis

Inherited and Non-Inherited Chromosome
Abnormalities – Trisomy, Monosomy,
Numerical Chromosome Abnormalities;
Translocation, Deletion, Structural
Chromosome Abnormalities, Sex Chromosome
Abnormalities

Reasons for Analyzing Chromosomal Disorders

Mutations - Dynamic Mutation; Somatic
Mutation; Point Mutation; Gene Deletion;
Mutation Polymorphism
Primer, Probe
Genomic Imprinting
Genetic Counselling

General principles of endocrinology- Hormones and their release; Techniques for studying hormones-Immunoassays, The hypothalamic

pituitary system, Thyroid hormones, Physiology of reproductive hormones, Hirsutism, Primary and secondary amenorrhea

Hormonal regulation of spermatogenesis, testicular function and sex differentiation

Hormonal regulation of ovarian cycles & luteal phase defect, implantation and pregnancy

Assisted Reproduction

Lecture (2 Credits 2 hours / week)

2 Credits

Existing	Proposed (no changes)
History of assisted reproduction,	History of assisted reproduction,
Gonadotrophins, Ovarian reserve test: antral	Gonadotrophins, Ovarian reserve test: antral
follicle count, CCCT, AMH test	follicle count, CCCT, AMH test
Ovulation induction, In Vitro Fertilization,	Ovulation induction, In Vitro Fertilization,
Premature ovulation, Laparoscopy and	Premature ovulation, Laparoscopy and
Transvaginal ultrasound, Oocyte retrieval,	Transvaginal ultrasound, Oocyte retrieval,
variations of IVF: GIFT, ZIFT, Oocyte and embryo	variations of IVF: GIFT, ZIFT, Oocyte and embryo
donation & third party reproduction, Surrogacy	donation & third party reproduction, Surrogacy
& Gestational carrier	& Gestational carrier
Complications of assisted reproduction; OHSS	Agonist and Antagonist protocols, Stimulation
(Ovarian hyperstimulation syndrome), multiple	protocols, individualized protocols,
pregnancy, Fertility drugs and ovarian cancer,	Complications of assisted reproduction; OHSS
oocyte retrieval procedure, multiple pregnancy,	(Ovarian hyperstimulation syndrome), multiple
miscarriage, ectopic pregnancy, risks associated	pregnancy & complications, Fertility drugs and
with ICSI	ovarian cancer, oocyte retrieval procedure,
Counselling in ART: Clinical, Embryological,	miscarriage, ectopic pregnancy, risks associated
Financial and Psychological counselling	with ICSI
Sperm retrieval procedures: PESA/MESA,	Counselling in ART: Clinical, Embryological,

TESA/TESE	Financial and Psychological counselling
Success in Assisted Reproduction, Reproductive	Sperm retrieval procedures: PESA/MESA,
tourism	TESA/TESE
	Success in Assisted Reproduction, Data analysis,
	Reproductive tourism

Semester 2 Clinical Embryology Techniques

Practical 1 (8 Credits 16 hours / week)

8 credits

Existing

Preparing for oocyte retrieval: Studying patient file, calculating the number of tubes and dishes for IVF and ICSI procedure, Labelling of dishes and tubes, adding culture media into the tubes and dishes, equilibration of culture dishes and tubes

Day 1: Checking for equilibration of culture media, preparation of lab for oocyte retrieval, arranging necessary disposables in the laminar flow workstation, screening of follicular fluid, identification of oocyte cumulus complex, identification of granulosa cells, separation of cumulus oocyte complex and further culture of oocytes, assessment of fertilization, assessment of cleavage embryos, stage and grading of cleavage stage embryos, blastocyst culture and grading

Embryo loading procedures and transfer

techniques

Proposed (No changes)

Conventional IVF; short & long coincubation, preparing for oocyte retrieval: Studying patient file, calculating the number of tubes and dishes for IVF and ICSI procedure, Labelling of dishes and tubes, adding culture media into the tubes and dishes, equilibration of culture dishes and tubes

Day 1: Checking for equilibration of culture media, preparation of lab for oocyte retrieval, arranging necessary disposables in the laminar flow workstation, screening of follicular fluid, identification of oocyte cumulus complex, identification of granulosa cells, separation of cumulus oocyte complex and further culture of oocytes, assessment of fertilization, assessment of cleavage embryos, stage and grading of cleavage stage embryos, blastocyst culture and grading

Embryo loading procedures and transfer techniques

Embryology laboratory maintenance; data
analysis and monitoring laboratory performance
Trouble shooting in the laboratory

Clinical Embryology Techniques 8 credits

Cryopreservation Techniques

8 Credits

Practical 1 (8 Credits 16 hours / week)

Existing

Preparing for oocyte retrieval: Studying patient file, calculating the number of tubes and dishes for IVF and ICSI procedure, Labelling of dishes and tubes, adding culture media into the tubes and dishes, equilibration of culture dishes and tubes

Day 1: Checking for equilibration of culture media, preparation of lab for oocyte retrieval, arranging necessary disposables in the laminar flow workstation, screening of follicular fluid, identification of oocyte cumulus complex, identification of granulosa cells, separation of cumulus oocyte complex and further culture of oocytes, assessment of fertilization, assessment of cleavage embryos, stage and grading of cleavage stage embryos, blastocyst culture and grading

Embryo loading procedures and transfer techniques

Proposed (shifted from Semester 3)

Preparation of cryopreservation solutions, selection of embryos for cryopreservation, setting up of dishes for vitrification & warming, selection of devices for vitrification, process of vitrification and warming, Trouble shooting in vitrification and warming, documentation of patient details and maintenance of patient records on embryos after warming, safety practice in vitrification, selection of blastocysts for vitrification, collapsing blastocoel for vitrification, method of blastocyst vitrification

Vitrification of oocytes: preparation of dishes for vitrification, selection of devices for vitrification of oocytes, preparation of vitrification solutions for vitrfication, process of oocyte vitrification

Semen cryopreservation, cryoprotectants used, epididymal and testicular sperm cryopreservation

Ovarian tissue cryopreservation: Harvesting ovary, preparation and processing of ovarian cortex, Vitrification of ovarian cortex, storage of vitrified ovarian cortex, warming of ovarian cortex.

Lecture (2 Credits 2 hours / week)

Existing	Proposed-No changes (re-arranged)
Overview of research process	Overview of research process and Research
Research hypothesis-study design, Types of	hypothesis
studies, analysis of data and interpretation	Observational study designs, analysis of data
Clinical trials, systematic review	and interpretation
Literature search and review	Process of conducting clinical trials
Ethics in human and animal research, Ethics and	Ethics and scientific conduct in human and
scientific conduct	animal research
Writing manuscript, publication, journal and	Literature search, systematic review and meta-
impact factor	analysis
Statistics-Estimation of sample size, Comparison	Publication process-Manuscript writing,
of proportions, comparison of means,	selection of journal and uploading manuscript
confidence interval, normal distribution, Chi-	impact factor
square test, t Test, P value, Regression analysis	Statistics-variables in statistics, measures of
	central tendency and dispersions, data
Preimplantation genetics (PGD), overview,	distributions, parametric and non-parametric
Indications; Sex linked disorders, Single gene	tests, correlation and regression analysis,
defects, chromosomal disorders	estimation of sample size, Chi-square test, t
Technical of Biopsy procedures; Polar body	Test, P value
biopsy; Cleavage-stage biopsy, Blastocyst biopsy,	
Cumulus cell analysis	Preimplantation genetics (PGD), overview,
Genetic analysis techniques and diagnosis;	Indications; Sex linked disorders, Single gene
FISH,,PCR-comparative genomic hybridization,	defects, chromosomal disorders
Next generation sequencing, Preimplantation	Technical of Biopsy procedures; Polar body
genetic haplotyping	biopsy; Cleavage-stage biopsy, Blastocyst biopsy,
Implications of PGD, PGD and religion, Legal	Cumulus cell analysis
aspects in India and rest of the world	Genetic analysis techniques and diagnosis;
PGS (pre-implantation genetic screening) and	FISH,,,PCR-comparative genomic hybridization,
aneuploidy screening	Next generation sequencing, Preimplantation
	genetic haplotyping
	Implications of PGD, PGD and religion, Legal
	aspects in India and rest of the world
	PGS (pre-implantation genetic screening) and
	aneuploidy screening

Theory Paper 2: Principles of Cryopreservation

2 credits

Lecture (2 Credits 2 hours / week)

Existing	Proposed
History of cryopreservation, Principles of	History of cryopreservation, Principles of
cryobiology; cryoprotectants, cryofreezers,	cryobiology; cryoprotectants, cryofreezers,
Factors affecting freezing, cryopreservation	Factors affecting freezing, cryopreservation
protocols,	protocols,
Embryo cryopreservation; slow freezing method,	Embryo cryopreservation; slow freezing and
penetrating and non-penetrating	thawing method, penetrating and non-
cryoprotectants, Slow freezing method for	penetrating cryoprotectants, Slow freezing
embryos, vitrification and warming of embryos,	method for embryos,
Cryoprotectants used in vitrification	vitrification and warming of embryos,
Oocyte cryopreservation: history, indications,	Cryoprotectants used in vitrification, Vitrification
method of cryopreservation of mature and	devices, Freeze all strategy, Importance of
immature oocytes, current status of oocyte	embryo cryopreservation
vitrification	
Ovarian tissue cryopreservation; history, current	Oocyte cryopreservation: history, indications,
status, future prospects, Ovarian tissue	method of cryopreservation of mature and
transplantation	immature oocytes, current status of oocyte
Cryopreservation of semen and testicular tissue	vitrification
Storage of cryopreserved samples and its safety	Fertility preservation; Ovarian tissue
	cryopreservation; history, current status,
	prospects, In vitro culture of ovarian tissue,
	Ovarian tissue transplantation and outcome
	Cryopreservation of semen and testicular tissue
	Storage of cryopreserved samples and its safety

Practical Paper 1: Intracytoplasmic sperm Injection (ICSI)

8 credits

Practical (8 Credits 16 hours / week)

existing	Proposed changes (No changes)
History of micromanipulation, Operation and	History of micromanipulation, Operation and
maintenance of micromanipulation,	maintenance of micromanipulation,
Familiarization of different micromanipulators,	Familiarization of different micromanipulators,
Advantages and disadvantages of different	Advantages and disadvantages of different
micromanipulators, microtools: preparation and	micromanipulators, microtools: preparation and
choice of microtools,	choice of microtools,

Alignment of microtools and troubleshooting, preparation of dishes for micromanipulation, method of stopping sperm motility, method of aspiration of spermatozoa, method of holding oocyte, focusing oocyte and injection pipette, Method of intracytoplasmic sperm injection Assisted hatching; zona drilling, zona thinning, chemical and laser assisted hatching

Biopsy procedures: Instrumentation, preparation of laboratory for biopsy procedure, method of biopsy, Acid Tyrode zona drilling, laser zona drilling,

Biopsy of polar body, biopsy of blastomeres,

Alignment of microtools and troubleshooting, preparation of dishes for micromanipulation, method of stopping sperm motility, method of aspiration of spermatozoa, method of holding oocyte, focusing oocyte and injection pipette, Method of intracytoplasmic sperm injection

Practical Paper 1: Micromanipulation and Embryo biopsy

8 credits

Practical (8 Credits 16 hours / week)

trophectoderm

Existing	Proposed changes
History of micromanipulation, Operation and	Assisted hatching; zona drilling, zona thinning,
maintenance of micromanipulation,	chemical and laser assisted hatching
Familiarization of different micromanipulators,	Biopsy procedures: Instrumentation,
Advantages and disadvantages of different	preparation of laboratory for biopsy procedure,
micromanipulators, microtools: preparation and	method of biopsy, Acid Tyrode zona drilling, laser zona drilling,
choice of microtools,	Biopsy of polar body, biopsy of blastomeres,
Alignment of microtools and troubleshooting,	trophectoderm
preparation of dishes for micromanipulation,	
method of stopping sperm motility, method of	
aspiration of spermatozoa, method of holding	
oocyte, focusing oocyte and injection pipette,	
Method of intracytoplasmic sperm injection	
Assisted hatching; zona drilling, zona thinning,	

chemical and laser assisted hatching Biopsy procedures: Instrumentation, preparation of laboratory for biopsy procedure, method of biopsy, Acid Tyrode zona drilling, laser zona drilling, Biopsy of polar body, biopsy of blastomeres, trophectoderm

4 Semester

Theory Paper 1: New Developments in ART and embryonic stem cells 2 credits

Existing	Proposed changes -No changes
Stem cells and regenerative medicine; adult	Stem cells and regenerative med
hemopoietic stem cells, testicular stem cells,	hemopoietic stem cells, testicula
embryonic stem cells, induced pluripotent	embryonic stem cells, induced pl
Isolation of ICM (inner cell mass) and derivation	Isolation of ICM (inner cell mass)
of embryonic stem cells, preparation of mouse	of embryonic stem cells, prepara
and human monolayer cells, Placental fibroblast	and human monolayer cells, Plac
cells, embryonic stem cell culture systems,	cells, embryonic stem cell culture
identification of stem cell colonies, markers of	identification of stem cell colonie
stem cells, stem cell banking.	stem cells, stem cell banking.
Differentiation of stem cells, potential of stem	Differentiation of stem cells, pot
cells in regenerative medicine, disease	cells in regenerative medicine, di
conditions stem cells investigated,	conditions stem cells investigate
disadvantages, current problems and future	disadvantages, current problems
prospects	prospects
Mitochondrial DNA mutations and diseases;	Mitochondrial DNA mutations ar
Introduction	Introduction
Prevention of mitochondrial diseases and oocyte	Prevention of mitochondrial dise
reconstruction; Pronuclear transfer technique,	reconstruction; Pronuclear trans
Spindle transfer technique, Ethics of oocyte	Spindle transfer technique, Ethic
reconstruction, current research	reconstruction, current research
Proteomics and metabolomics	Proteomics and metabolomics
	1

New embryo culture techniques

Current and future developments

Embryo editing

egenerative medicine; adult m cells, testicular stem cells, cells, induced pluripotent (inner cell mass) and derivation em cells, preparation of mouse olayer cells, Placental fibroblast stem cell culture systems, stem cell colonies, markers of cell banking. of stem cells, potential of stem tive medicine, disease cells investigated, current problems and future NA mutations and diseases; itochondrial diseases and oocyte Pronuclear transfer technique, technique, Ethics of oocyte current research metabolomics New embryo culture techniques Embryo editing Current and future developments

Existing	Proposed-No changes
Moral philosophy	Moral philosophy
Regulation in assisted reproduction- ICMR	Regulation in assisted reproduction- ICMR
(Indian Council of Medical Research) guidelines	(Indian Council of Medical Research) guidelines
and proposed ART bill, PCPNDT act, Surrogacy	and proposed ART bill, PCPNDT act, Surrogacy
laws	laws, Regulations of ART in other countries
Regulation and ethics in clinical IVF practice;	
gamete and embryo donation, Research on	Regulation and ethics in clinical IVF practice;
embryos, sex selection, surrogacy, cloning;	gamete and embryo donation, Research on
reproductive and therapeutic	embryos, sex selection, surrogacy, cloning;
Regulation of gamete banks and gamete donors,	reproductive and therapeutic
Accreditation of ART centres and personnel,	Regulation of gamete banks and gamete donors,
Counselling in ART	Accreditation of ART centres and personnel,
	Counselling in ART, Ethics and regulations of
	embryo editing, Ethics of 3 parent baby, Ethics
	and regulations of PGD & PGT-A

Research Seminar 4 credits

Existing	Proposed-No changes
Collection of information, Search engines	Collection of information, Search engines
(PubMed, gene data bank), Preparation of PPT.	(PubMed, gene data bank), Preparation of PPT.
The student shall present a recently published	The student shall present a recently published
research paper related to infertility and	research paper related to infertility and
embryology through power point presentation	embryology through power point presentation

Project work 10 Credits

Existing	Proposed-No changes
Project work is designed to provide research	Project work is designed to provide research
experience to the students. The student has to	experience to the students. The student has to
work independently on a research problem	work independently on a research problem
related to infertility. The student shall carry out	related to infertility. The student shall carry out
this project in consultation with faculty.	this project in consultation with faculty.