Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301 e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY SOF MYSORE

Estd. 1916

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 20.07.2024

No.AC2(S)/55/2024-25

Notification

Sub:-Syllabus and Scheme of Examinations of Electronics (UG) programme (I & II Semester) from the Academic year 2024-25.

Ref:-1. Decision of Board of Studies in Electronics (UG) meeting held on 05-06-2024.

- 2. Decision of the Faculty of Science & Technology meeting held on 19-06-2024.
- 3. Decision of the Academic Council meeting held on 28.06.2024.

The Board of Studies in Electronics (UG) which met on 05-06-2024 has resolved to recommend & approved the Syllabus and Scheme of examinations of Electronics (UG) programme (I & II Semester) with effect from the Academic year 2024-25.

The Faculty of Science & Technology and Academic Council at their meetings held on 19-06-2024 and 29-06-2024 respectively has also approved the above said Syllabus and Scheme of examinations hence it is hereby notified.

The Syllabus and Scheme of Examinations content may be downloaded from the University Website i.e., www.uni-mysore.ac.in.

Registrar Registrar University of Mysore Mysore 9

To;

- 1. All the Principal of affiliated Colleges of University of Mysore, Mysore.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS in Electronics, Manasagangothri, Mysore.
- 4. The Dean, Faculty of Science & Technology, DOS in Mathematics, MGM.
- 5. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 6. The Director, PMEB, Manasagangothri, Mysore.
- 7. Director, College Development Council, Manasagangothri, Mysore.
- 8. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 9. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 10. Office Copy.

Curriculum for I and II Semester B.Sc. Degree with Electronics

From the Academic Year 2024-25

(Based on UoM Letter with No.AC2(S)/07/2024-25, dated, 23-05-2024)

Subject: Electronics

Submitted to

University of Mysore

Mysuru, Karnataka.

Preamble

The proposed curriculum content for B.Sc. Degree in Electronics as per GoK and University of Mysore Guidelines 2024 is intended to enable the graduates to respond to the current needs of the Industry and equip them with skills relevant for National and Global standards. The framework encourages innovation in teaching-learning process and appropriate assessment of student learning levels.

Introduction

B.Sc. Degree in Electronics is a program that develops a specialized skill set among the graduates to cater to the need of Academia and Industries . The curriculum is designed to help learners to analyze, appreciate, understand, and critically engage in learning the courses and to provide better learning experience to the graduates. Apart from imparting disciplinary knowledge, the curriculum is aimed to equip the graduates with competencies like problem solving and analytical thinking which provide them professional competencies. To achieve the Course and Program Outcomes, the University encourages its faculties to make suitable pedagogical innovations, in addition to teaching/learning processes suggested in the curriculum.

Significance of Electronics

In recent years, Electronics has made unprecedented growth in terms of new technologies, new ideas, and principles. The research organizations and industries that work in the frontier area of Electronics are in need of highly skilled and scientifically oriented manpower. This is addressed by flexible, adaptive, and progressive training programs and a cohesive interaction among the Institutions, Universities, and Industries. The key areas of study and hands on training within the subject area of Electronics comprising of Semiconductor Devices, Circuit Analysis, Analog and Digital Circuit Design, Microcontrollers, Embedded Microprocessors and Systems, Knowledge on Coding/Programming in High Level Languages, Basic and Advanced Communication Systems like IoT, 4G, 5G, Satellite and Optical communication, Signal Processing, VLSI Technology, Basics of Control Systems and Robotics, etc.

Eligibility Criteria

A candidate who has passed two year Pre-University Examination with Science Courses conducted by the Pre-University Board of Education, Government of Karnataka or any other examination considered equivalent by the University is eligible for admission to the first Semester of the UG program.

Programme Objectives

- To impart quality education to the students so that they acquire knowledge in Electronics.
- To provide students with the fundamental skills of different domains in Electronics to enhance the knowledge and understanding of key concepts of Electronics.
- To equip students with advanced Scientific and Technological capabilities for analyzing and tackling the issues and problems in the field of Electronics.
- To build mathematical and numerical background for the design and analysis of Electronic Circuits..
- To develop self and continuous learning and practice professional ethics for societal benefits.
- To provide students with skills that enables them to get employment in Industries or pursue higher studies or research assignments or turn as entrepreneurs.

Programme Outcomes

- Understand comprehensively the entire range of Electronic Devices and Circuits with the state-of art knowledge on advanced electronic systems.
- Identify, formulate, and solve problems in the area of Electronics.
- Design and manage Electronic Systems or Processes that conforms to a given specification within ethical and economic constraints
- Ability to use Modern Tools/Techniques in solving problems in the field of Electronics.
- Function effectively as an individual and as a member in diverse teams and in multidisciplinary settings
- Excel in their professional endeavors through self-education.

Scheme of Evaluation

The Scheme of Examination, Evaluation, Passing Criteria, etc., are as per the Regulations of University of Mysore. The performance of the candidate in Theory, Practical, and Project Work are assessed based on three discrete components identified as C1, C2, and C3. The components C1 and C2 are the Continuous Internal Assessments (CIA) and C3 is the Semester End Examination (SEE). The CIA C1 and C2 are to be conducted during 8th and 15th weeks of the Semester. The SEE for C3 is conducted during 18th to 20th week based on University notification.

C1 and C2 for Theory Courses

The C1 and C2 components of each Courses are evaluated for 10 marks. The C3 component is evaluated for 80 marks through SEE. The duration of semester end Examination is 3 Hours. The scheme of evaluation of C1 and C2 is given in Table 1.

Activity	Marks Allotted		
Activity	C1	C2	
Test (Best of Two Tests)	05	05	
Assignment	05		
Seminar/Mini Project Work/Case Study/ Report on Industry Visit, etc.,		05	
Total Marks	10	10	

Scheme of Evaluation for Practical Courses

In the practical courses, students are evaluated on the basis of skill, comprehension, and recording the results. The C1 and C2 components in practicals are evaluated for 05 marks. The C3 component which is the S EE is evaluated for 40 marks. The scheme of evaluation of C1 and C2 components is given in Table 2.

 Table 2. Scheme of Evaluation for C1 and C2 for Practical Courses

Activity	Marks Allotted			
Activity	C1 C2			
Test, Regularity and Performance in the Practical Sessions,	05			
etc.				
Laboratory Record		05		
Total Marks	05	05		

The scheme of evaluation of C3 component of practical courses is given below.

- A candidate appearing for the Practical examination should submit a duly signed and certified practical record
- Each candidate has to perform given experiment in the specified duration for forty marks. The evaluation scheme is given in Table 3.

Table 3. S	cheme of ev	valuation for	C3 component in	Practical Examination
------------	-------------	---------------	-----------------	-----------------------

Division	Marks
Write up (Circuit Diagram/Program/Formula/ Tabular	20
Column/Expected Results, etc.)	
Conducting of experiments/Programme Execution/Recording	15
of Results, etc.	
Viva	05
Total	40

Question Paper Pattern

PART-A

1. Answer any **TEN** questions. $10 \times 2 = 20$

Short Answer questions of 2 marks each. Four questions from each unit.

Time: 3 Hours

PART-B

Answer any **THREE** questions. (Question No. 2 to 5) $3 \times 20 = 60$

Each main question of 20 marks with a split of questions carrying six, five, four, and three marks.

One question from each unit and the last question shall be from all three units.

Max. Marks: 80

Course Structure and Syllabus for B.Sc. (Electronics) from the Academic

Year 2024-25

Sl. No.		Course Code	Course Title Teaching Hours/Week		8		its				
	Semester			L	Τ	Р	Examination Hours	CIA Marks	SEE Marks	Total	Total Credits
		DSC-ELE1	Fundamentals of Electronics	3	0	0	3	20	80	100	3
1.	Ι	DSC-ELE1P	Fundamentals of Electronics Practical	0	0	4	3	10	40	50	2
		DSC-ELE2	Analog Electronic Circuits	3	0	0	3	20	80	100	3
2.	Π	DSC-ELE2P	Analog Electronic Circuits Practical	0	0	4	3	10	40	50	2

I Semester

Program Name	BSc with Electronics	Semester		First	Semester
Course Title	Fundamentals of Electroni	cs			
Course Code	DSC-ELE1		No. of Credits		3
Contact Hours	45 Hours		Duration of Exar	n	3 Hours
CIA Marks	20		SEE Marks		80

Course Objectives:

- > To acquire the knowledge of working principles of Electronic components
- > To understand Network theorems with examples
- > To know the classification and characteristics of semiconductor diodes
- ➤ Deliberate in detail the application of semiconductor diodes

Course Outcomes:

- > Analyze basic networks using network theorems.
- > Demonstrate the working of analog circuits as per the specifications.
- > Explain the principles and behavior of basic semiconductor devices
- Build simple electronic circuits

Contents	45 Hrs
Unit 1	15 Hrs
Resistors: Ohm's law, concept of resistance, classification of resistors, fixed – carbon co	mposition.

concept of resistance, classification of resistors, fixed metal film & SMD resistors, Variable – Carbon composition and preset, color code, equivalent resistors in series and parallel combination, applications. Capacitors: Classification, types, fixed-Ceramic, polystyrene Electrolytic, and SMD capacitors, Variable – ganged and trimmer capacitors, equivalent capacitors in series and parallel combination applications. and its **Inductors:** Classification, types, equivalent inductors in series and parallel combination and its applications. Transformers: Principle and Types: step-up, step-down, Isolation, Center taped. DC analysis of RC Circuit: Charging and discharging of Capacitor through Resistor and time constant, energy stored in Capacitor. DC analysis of RL Circuit: Growth and decay of current in series RL Circuit, time constant, and energy stored in Inductor. AC Fundamentals: Instantaneous voltage, peak voltage, RMS voltage, frequency, time period, with reference to sinusoidal waveform.

Unit 2	15 Hrs				
AC Analysis: AC analysis of RC, RL circuits. Series and parallel resonant RLC circuit					
Condition for resonance, Resonant frequency, Half power frequencies, BW, Quality factor					
Kirchhoff's current law and Kirchhoff's voltage law, current and voltage divider rule.					
Network theorems: Super position theorem, Thevenin's theorem, Norton's theorem, Maximum					
power transfer theorem, and Reciprocity theorem.					
Unit 3 15 H					
N-junction Diode: Introduction, ideal and practical diodes, construction of PN-Junction, V-I					

PN-junction Diode: Introduction, ideal and practical diodes, construction of PN-Junction, V-I characteristics. **Rectifiers:** Half-wave and Full-wave bridge rectifier, PIV, Ripple factor and efficiency. **Filters** - Operation of full wave rectifier with shunt capacitor filter. **Zener diode**: Introduction, construction of Zener diode, V-I Characteristics, Zener, and avalanche breakdown. Zener voltage regulator - load and line regulation. **Fixed voltage regulators:** 78xx and 79xx series. Block diagram of regulated DC power supply. **Wave shaping circuits-** Clippers and Clampers - Positive and Negative type.

Refe	Reference Books						
1	Robert L Boylestad, and Louis Nashelsky, "Electronic Devices & Circuit Theory," 11 th Edition, Pearson Education India, 2018.						
2	Ravish R Singh, "Network Analysis and Synthesis," 1 st Edition, MGH, 2018.						
3	Robert L Boylestad, "Introductory Circuit Analysis," 15 th edition, Pearson, 2015.						
4	R. S. Sedha, "A Text book of Applied Electronics," 7 th edition., S. Chand and Company Ltd., 2011.						
5	A. P. Malvino, and, David J Bates, "Electronics Principles," 7 th Edition, TMH, 2011.						
6	David A. Bell, "Electronic Devices and Circuits," 5 th Edition, Oxford Uni. Press, 2015.						

I Semester

Program Name	BSc with Electronics		Semester	First Sem	lester		
Course Title	Fundamentals of Elec	ctronics l	Practical				
Course Code	DSC-ELE1P		No. of Credits 2				
	CIA Marks	10	SEE Marks 40				
Note: Minimum o	of 8 Experiments to be co	ompleted					
Course Objec	tives:						
-		field of e	lectronic circuits through ex	periment			
• •	Electronic circuits by appl		-	•			
•	nd the V-I characteristics						
	ple electronic circuits						
	•						
Course Outco	mes:						
Understar	nd the working of Electron	nic Instru	ments				
 Understar 	nd circuit reduction using	Network	theorems				
Understar	nd the behavior of semicor	nductor de	evices				
\succ Able to de	esign a simple power supp	oly					
1. Study of c	charging and discharging	of a capa	citor - determination of time	e constant			
2. Study of s	series and parallel LCR re	sonant ci	rcuits – determination of res	onant frequ	ency,		
bandwidtl	n, and Q- factor.						
3. Verificati	on of Thevenin's and Nort	on's Theo	rem				
4. Verificati	on of Maximum Power Tra	ansfer Th	eorem				
5. Study the	V-I Characteristics of p-r	i junction	diode- determination of resi	stances and	knee		
voltage.	V.I.Characteristics Zener	diada	latermination of gapon brook	down volto	~~		
-			letermination of zener break	down vona	ge.		
	de as a voltage regulator		-				
			factor with and without filt				
	-		f ripple factor with and with	out filter.			
-	elipping and clamping circ						
11. Design of	DC regulated power supp	ly.					
12. Design of	fixed voltage regulator cir	rcuits					

II Semester

Program Name	B.Sc. with Elec	etronics	Semester	Semester Second Semest				
Course Title Analog Electronic Circuits								
Course Code	DSC-ELE2 No. of Credits 3							
Contact hours	45 Hour	45 Hours Duration of Exam 3 1						
	CIA Marks	20	SEE Marks 8					
Course Object	ives:			I				
Understand t	he operation and ap	plications	of transistors					
➢ Understand	and analyze the desi	ign of trans	sistor Amplifiers and Oscillato	ors				
Understand t	he characteristics ar	d applicat	ions of operational amplifiers					
	ectronic circuits usir							
Course Outcon	nes:							
 Analyze bit 	iasing techniques to	operate a t	transistor.					
> Understan	d and demonstrate th	ne working	of transistor amplifier circuits	8				
Understand	d and demonstrate th	ne working	of transistor oscillator circuits					
Design an	d build the circuits	using op-a	mp					
		Contents			45 Hrs			
		Unit 1			15 Hrs			
Bipolar Junction T	ransistor: Introduc	tion to trar	nsistors- types, construction a	nd work	ing of NPN			
transistor, CE, CB	and CC configuration	ons , input	and output characteristics of	a trans	sistor in CE			
configuration. Regi	ons of operation (active, cut	t off, and saturation), Curre	nt gain	s α and β .			
Relations between	α and β . Transisto	or biasing	: Need for biasing, DC load	line ar	nd Q point,			
Thermal runaway, r	need for Stabilization	on - stabili	ty and stability factor, Types	of bias	sing - Fixed			
Bias, and Voltage Divider Bias.								
Unit 2 15 Hrs								
Amplifiers: Definit	ion and classification	on of amp	olifiers, single stage CE amp	lifier- c	onstruction,			
working, and frequency response. Application of transistor as switch. Multistage amplifiers:								
Introduction, Types of coupling, Two-stage RC Coupled Amplifier and its frequency Response								
Power amplifiers: Class A, Class B, and Class C power amplifiers. Feedback in Amplifiers:								

Concept of feedback, negative and positive feedback, and advantages of negative feedback. **Oscillators:** Introduction, Type of oscillators, Barkhausen criterion for sustained oscillations. Phase shift oscillator, Colpitt's oscillator, Hartley Oscillator, and crystal oscillator.

Unit 3						
OP-AMP: Introduction, Basics of Differential Amplifier, Block diagram of	Op-Amp,					
Characteristics of an Ideal and Practical Op-Amp, Open and closed loop inverting	g and non-					
inverting amplifiers. Op-amp parameters – input and output impedance, off-set voltage, CMRR,						
Slew Rate. Concept of Virtual Ground. Applications of Op-Amps: Adder, subtractor, Integrator,						
Differentiator and voltage follower. Comparator and Zero-crossing detector. Phase shift and Wein						
bridge oscillator, Astable multivibrator using Op-amp, Square wave & Triangular Wave Generators.						
Filters- Introduction to Active and passive filters, First Order active low pass and high pass						
Butterworth filter. Second Order active low pass and high pass Butterworth filter.						

Reference Books				
1	Robert L Boylestad, and Louis Nashelsky, "Electronic Devices & Circuit Theory," 11th			
	Edition, Pearson Education India, 2018.			
2	R. S. Sedha, "A Text book of Applied Electronics," 7th edition., S. Chand and Company			
	Ltd., 2011.			
3	David A. Bell, "Electronic Devices and Circuits," 5th Edition, Oxford Uni. Press, 2015.			
4	R. A. Gayakwad, "Op-Amps and Linear Integrated Circuit," 4th Edition, Pearson			
	Education, 2000.			
5	David A. Bell, "Operational Amplifiers and Linear ICs," 3 rd Edition, Oxford University			
	Press, 2011.			
6	Robert L Boylestad, "Introductory Circuit Analysis," 15 th edition, Pearson, 2015.			

II Semester

Program Name	BSc in Electronics		Semester	Second S	emester			
Course Title	Analog Electronic C	ircuits Pr	actical					
Course Code	DSC-ELE2 P		No. of Credits		2			
	CIA Marks	CIA Marks 10 SE		E Marks	40			
Note: Minimum	of 8 Experiments to be	completed			I			
Course Objec	tives:							
Study the	characteristics of transis	stor in CE	mode					
> Understar	nd the working of amplif	ïers						
Understar	nd different applications	of op-amp						
Design di	fferent signal conditioning	ng circuits	like filters.					
Course Outco	mes:							
 Analyze p 	practical behavior of BJT	- -						
Design si	mple circuits using op-a	mp						
Understar	nd the concept and worki	ng of Filte	ers					
1. Input, out	Input, output characteristics of transistor in CE configuration – determination of							
transistor	parameters.							
-	gle-Stage CE amplifier with and without bypass capacitor– frequency response and prmination of bandwidth							
3. Colpitt's	Colpitt's oscillator using Transistor – determination of output frequency							
4. Phase shi	Phase shift oscillator using Transistor – determination of output frequency.							
5. Feedback	Feedback amplifiers- determination of gain and bandwidth with and out feedback.							
	Op-amp Inverting, and Non-inverting amplifier (D.C)- determination of output voltage and voltage gain.							
7. Op-amp A	Adder and subtractor – de	eterminatio	on of output voltage.					
8. To study	o study the zero-crossing detector and comparator.							
9. To study	op-amp Integrator and D	oifferentiat	or.					
10. To design	a Wien bridge oscillato	r using an	op-amp.					
11. To design	a Phase shift oscillator	using an o	p-amp.					
12. To design	Butterworth Low Pass a	and plot fr	equency response.					
13. To design	a Butterworth High Pas	s active Fi	lter and plot frequency resp	onse.				