Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301 e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY Estd. 1916 OF MYSORE

No.AC2(S)/151/2020-21

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 04.10.2023

Notification

Sub:- Modification Syllabus and Scheme of Examinations Microbiology (UG) (IIIrd & IVth Semester) with effect from the Academic year 2023-24.

Ref:- Decision of Board of Studies in Microbiology (UG) meeting held On 16.09.2023.

The Board of Studies in Microbiology (UG) which met on 16.09.2023 has resolved to recommended and approved the syllabus and scheme of Examinations of Microbiology Programme (IIIrd & IVth Semester) with effect from the Academic year 2023-24.

Pending approval of the Faculty of Science & Technology and Academic Council meetings the above said syllabus and scheme of examinations are hereby notified.

The syllabus and scheme of Examinations contents may be downloaded from the University website i.e., <u>www.uni-mysore.ac.in</u>.

DRAFT AF PROVED BY THE REGISTRAR

Deputy Registrar (Academic) Deputy Registrar (Academic) University of Mysore Mysore 570 005

To;

- 1. All the Principal of affiliated Colleges of University of Mysore, Mysore.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS in Microbiology, Manasagangothri, Mysore.
- 4. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 5. The Director, PMEB, University of Mysore, Mysore.
- 6. Director, College Development Council, Manasagangothri, Mysore.
- 7. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 8. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 9. Office Copy.

UNIVERSITY OF MYSORE

Curriculum Framework for Undergraduate Programme in Colleges at University of Mysore, Mysuru

NATIONAL EDUCATION POLICY 2020

3rd and 4th Semester Model Syllabus for B. Sc. in Microbiology

Board of Studies in Microbiology Department of Studies in Microbiology University of Mysore Manasagangotri, Mysuru – 570 006

2023-24 onwards

B. Sc.: Curriculum and Credit Framework for Undergraduate Programme

Sem.					Total Credite	
	Courses	Multidisciplinary/Open	Enhancement	C) all UG Programs)/ Summer Internshi		
	- Core (DSC), Elective	Elective (OE)	Courses (AEC)			
	(DSE)(Credits) (L+T+P)	Courses(Credits)	(Credits)(L+T+P)			
		(L+T+P)	(Languages)			
Ι	DSC-A1(4), A2(2)	OE-1 (3)	L1-1(3), L2-1(3)	SEC-1: Digital Fluency	Health, Wellness & Yoga (2)	25/26
	DSC-B1(4), B2(2)		(4 hrs each)	(2) (1+0+2)/	(1+0+2)	
				Env. Studies (3)		
Ш	DSC-A3(4), A4(2),	OE-2 (3)	L1-2(3), L2-2(3)	Env. Studies (3)/ SEC-1:	Sports/NCC/NSS/R&R(S&G) /	26/25
	DSC-B3(4), B4(2)		(4 hrs each)	Digital Fluency (2)(1+0+2)	Cultural (2) (0+0+4)	
Stu	dents exiting the program	me after securing 46 credit	s will be awarded UG	Certificate in Disciplines A ar	nd B provided they secure 4 cre	edits in
work	based vocational courses	during summer term or inte	rnship/Apprenticeshi	p in addition to 6 credits from	n skill-based courses earned d	uring the
			first year.			
Ш	DSC-A5(4), A6(2),	OE-3 (3)/ India and Indian	L1-3(3), L2-3(3)	SEC-2:AI/CyberSecurity/Finan-	Sports/NCC/NSS/R&R(S&G)	25
	DSC-B5(4), B6(2)	Constitution (3)	(4 hrs. each)	c ial Edu. & Inv. Aw. (2)	/Cultural (2) (0+0+4)/ SEC(2)	
				(1+0+2)		
IV	DSC-A7(4), A8(2),	India and Indian	L1-4(3), L2-4(3)	SEC-3: Financial Edu. &Inv.	Sports/NCC/NSS/R&R(S&G)	25
	DSC-B7(4), B8(2)	Constitution (3) / OE-3(3)	(4 hrs. each)	Aw. /AI /Cyber Security (2)	/ Cultural (2) (0+0+4)/ SEC (2)	
				(1+0+2)		
Stı	udents exiting the program	nme after securing 92 credi	ts will be awarded UG	Diploma in Disciplines A and	B provided they secure addit	ional 4
		-		ing first- or second-year sum		
V	DSC-A9(4), A10(2),	DSC-B9(4), B10(2),		SEC-4: Employability		27
	A11(4), A12(2);	B11(4),B12(2)		Skills/Cyber Security (3)		
		(-)		(2+0+2)		
VI	DSC-A13(4), A14(2),	DSC-B13(4), B14(2),		Internship (2)		26
	A15(4), A16(2);	B15(4), B16(2)				
			arded UG Degree in D	isciplines A and B as double r	najors upon securing 136 cred	its and
		-	-	r each category of courses pr		

Sem. No.	Course Category		Course Title	Credits Assigned	Instructional hours per week		Duration of Exam (Hrs.)	Exam/ Evaluation Pattern (Marks)		
NO.	Category	Coue		Assigned	Theory	Practical		IA	Exam	Total
III	DSC	DSC-5T	Microbial diversity	4	4		2 ¹ / ₂	40	60	100
		DSC-6P	Microbial diversity	2		4	3	25	25	50
	OEC	OE-3T	Microbial Entrepreneurship	3	3		2 ¹ / ₂	40	60	100
IV	DSC	DSC-7T	Microbial Enzymology and Metabolism	4	4		2 ¹ / ₂	40	60	100
		DSC-8P	Microbial Enzymology and Metabolism	2		4	3	25	25	50
	OEC	OE-4T	Human Microbiome	2	2		2 ¹ / ₂	20	30	50

MODEL CURRICULUM

Name of the Degree Program: B. Sc. (Basic/Hons.) Discipline Core: Microbiology Total Credits for the Program: B. Sc. Basic - 136 and B. Sc. Hons. - 176 Starting year of implementation: 2021-22

Program Outcomes: Competencies need to be acquired by the candidate securing B. Sc. (Basic) or B. Sc. (Hons.)

By the end of the program the students will be able to:

- 1. Knowledge and understanding of concepts of microbiology and its application in pharma, food, agriculture, beverages, nutraceutical industries.
- 2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance.
- 3. Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues.
- 4. Learning and practicing professional skills in handling microbes and contaminants in laboratories and production sectors.
- 5. Exploring the microbial world and analysing the specific benefits and challenges.
- 6. Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors.
- 7. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.
- 8. Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes.
- 9. Understanding and application of microbial principles in forensic and working knowledge about clinical microbiology.
- 10. Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards.
- 11. Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyse outcomes by adopting scientific methods, thereby improving the employability.
- 12. Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology.

Assessment:

Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40%	60%
Practical	50%	50%
Projects	40%	60%
Experiential Learning	30%	70%
(Internships/MOOC/Swayam etc.)		

Formative Assessment : 40%				
Assessment Occasion/ type Weightage in Marks				
C1 = IA -1 + Assignments / Visits	10% + 10% = 20% : 20 Marks			
C2 = IA -2 + Seminars / Group Discussion	10% + 10 = 20% : 20 Marks			
Total	40% : 40 Marks			

Total Marks for each course = 100% Formative Assessment (C1 + C2) = 40% Semester End Examination (C3) = 60% marks

B. Sc. Microbiology 3rd Semester

Program name	B. Sc. in MICROBIOLOGY			Semester	111
Course Title		MICROBIAL DIVERSITY (Theory)			
Course Code	DSC-5T		No. of Credits		04
Contact Hours	60 (4 Hrs. per	week)	Duration of SEA/Exam (Hrs.)		2 ¹ / ₂
Formative Assessment Marks		40	Summative As	sessment Marks	60

Course Outcomes (COs): At the end of the course the student should be able to;

- 1. Knowledge about microbes and their diversity.
- 2. Study, characters, classification and economic importance of Pro-eukaryotic and Eukaryotic microbes.
- 3. Knowledge about viruses and their diversity.

Content of Course 3: Theory: DSC-5T, Microbial Diversity	60 Hrs.			
Unit 1: Biodiversity and Microbial Diversity	15 Hrs.			
Concept, definition, and levels of biodiversity. Study and measures of microbial diversity.				
Major classification systems: Whittaker's five kingdom classification and Carl	Woese's			
three domain classification. Biosystematics: Taxonomic ranks, Nomenclature – ICN	NP rules.			
Phenotypic and phylogenetic classification. Classical and molecular characteristic	used in			
microbial taxonomy. Assessing microbial phylogeny- Molecular chronomet	ter and			
Phylogenetic tree. Numerical and Chemotaxonomy. Ribotyping. Economic va	alues of			
microbial diversity.				
Unit 2: Diversity of Prokaryotic Microorganisms	15 Hrs.			
An overview of Bergey's Manual of Systematic Bacteriology.				
General characteristics and economic importance;				
Bacteria- Escherichia coli, Bacillus subtilis, Staphylococcus aureus				
Archea- Thermophiles- Thermus aquaticus and Halophiles- Halobacteria salinariur	т			
Cyanobacteria- Nostoc, Microcystis, Spirulina				
Actinomycetes: Streptomyces, Nocordia, Frankia				
Rickettsiae- Rickettsia rickettsi				
Chlamydiae- Chlamydia trachomatis				
Spirochaetes- Treponema pallidum				
Unit 3: Diversity of Eukaryotic Microorganisms	15 Hrs.			
Fungi: Alexopoulos and Mim's classification. General characteristics, St	ructure,			
reproduction and economic importance- Rhizopus, Aspergillus, Agaricus, Fu	ısarium,			
Saccharomyces.				
Algae: Fritsch's classification. Occurrence, thallus organization and economic imp	ortance			
Chlorella, Cosmarium, Diatoms, Gracilaraia, Lichen-thallus organization and types	•			
Protozoa: Salient features, Classification up to the level of classes. Type study-	Euglena,			
Paramoecium, Trypanosoma				
Unit 4: Diversity of Virus	15 Hrs.			

General properties and structure, Isolation and purification of virus. Principles of Viral taxonomy- Baltimore and ICTV classification. Capsid symmetry- Icosahedral, helical, complex. Structure, Replication and Significance of the following: Human and Animal viruses: HIV, Corona, Oncogenic virus and H1N1. Plants viruses: TMV, Ring spot virus in Tomato Microbial viruses: T4 phage, Lambda phage, Cyanophages and Mycophages. Subviral particles: Viroids, Virusoids, Satellite virus and Prions.

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessme	Formative Assessment for Theory				
Assessment Occasion/ type	Marks				
Attendance	10				
Seminar	10				
Debate/Quiz/Assignment	10				
Class test	10				
Total	40				
Formative Assessment as per gu	uidelines are compulsory				

Course 3: Practical: DSC-6P, Microbial Diversity

Course Title	MICROBIAL DIVERSITY (Practical)				
Course Code	DSC-6P		No. of Credits	02	
Contact Hours	60 (4 Hrs. per session)		Duration of SEA/Exam (Hrs.)	03	
Formative Assessment Marks		25	Summative Assessment Marks	25	

Practical Content

- 1. Isolation and enumeration of bacteria from soil
- 2. Isolation and identification of fungi from soil
- 3. Isolation and characterization of bacteria from air
- 4. Isolation and identification of fungi from air
- 5. Isolation and enumeration of bacteria from water
- 6. Microscopic observation of pond and lake water for cyanobacteria and algae
- 7. Cultivation of cyanobacteria
- 8. Cultivation of Actinomycetes
- 9. Measurement of microbial cell size by Micrometry
- 10. Study of cyanobacteria -Nostoc, Microcyctis, Spirulina
- 11. Study of Algae Chlorella, Diatoms, Gracilaria
- 12. Study of Fungi Rhizopus, Aspergillus, Saccharomyces, Agaricus
- 13. Study of Protozoa Paramoecium, Euglena
- 14. Study of HIV, Corona virus and Oncogenic viruses
- 15. Study of TMV, T4 Phage and Viroids

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical					
Assessment Occasion/ type	Marks				
Class Records	05				
Test	10				
Attendance	05				
Performance	05				
Total	25				
Formative Assessment as per guidelines are compulsory					

Text Books / References

- 1. Brock, T. D. and Madigan, M. T. (1988). Biology of Microorganisms, V Edition. Prentice Hall. New Jersey
- 2. Vashishta, B. R, Sinha A.K and Singh V. P. (2005). Botany Fungi, S. Chand and Company Limited, NewDelhi
- 3. Black, J. G. (2002). Microbiology-Principles and Explorations. John Wiley and Sons, Inc. New York
- 4. Dimmock, N. J., Easton, A. J., and Leppard, K. N. (2001). Introduction to Modern Virology. 5th edn. Blackwell publishing, USA
- Flint, S. J., Enquist, L. W., Drug, R. M., Racaniello, V. R. and Skalka, A. M. (2000). Principles of Virology- Molecular Biology, Pathogenesis and Control. ASM Press, Washington, D.C
- Prescott, Harley, Klein's Microbiology, J. M. Willey, L. M. Sherwood, C. J. Woolverton, (2008) 7th edition, McGraw Hill
- 7. Kotpal R. L (2008). Protozoa, 5th edn. Rastogi Publications, Meerut, New Delhi.
- 8. Tortora, G. J. Funke, B. R. Case, C. L. (2008). Microbiology An Introduction, 10th edn., PearsonEducation
- 9. Pelczar, M. J., Chan, E. C. S. and Krieg, N. R. (1993). Microbiology. 5th edn. McGraw Hill Book Company.
- 10. Vashishta, B. R Sinha A. K and Singh V. P. (2005). Botany Algae S. Chand and Company Limited, NewDelhi
- 11. Alexopoulos, C. J., Mims, C. W., and Blackwell, M. (2002). Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869pp

Course 3: Theory: OE 3T, Microbial Entrepreneurship

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Demonstrate Entrepreneurial skills
- 2. Acquire knowledge industrial Entrepreneurship
- 3. Acquire knowledge about Healthcare Entrepreneurship

Course 3: Theory: OE 3T, Microbial Entrepreneurship	42Hrs			
Unit 1: General Entrepreneurship	14Hrs			
Entrepreneurship and microbial entrepreneurship - Introduction and scope,	Business			
development, product marketing, HRD, Bio-safety and Bioethics, IPR and pa	atenting,			
Government organization/ institutions/ schemes, Opportunities and challenges.				
Unit 2: Industrial Entrepreneurship 14Hrs				
Microbiological industries – Types, processes and products, Dairy products, Fe	rmented			
foods, Bakery and Confectionery, Alcoholic products and Beverages, Enzymes – In	ndustrial			
production and applications. Biofertilizers and Biopesticides, SCP (Mushroom and S	pirulina)			
etc.				
Unit 3: Healthcare Entrepreneurship 14Hrs				
Production and applications: Sanitizers, Antiseptic solutions, Polyphenols (Flavonoids),				
Alkaloids, Cosmetics, Biopigments and Bioplastics, vaccines, Diagnostic tools and kits.				

Text Books / References

- 1. Srilakshmi B, (2007). Dietetics. New Age International publishers. New Delhi
- 2. Srilakshmi B, (2002). Nutrition Science. New Age International publishers. New Delhi
- 3. Swaminathan M. (2002). Advanced text book on food and Nutrition. Volume I. Bappco
- 4. Gopalan.C., Ramasastry, B.V., and Balasubramanian, S.C.(2009). Nutritive value of IndianFoods. NIN. ICMR. Hyderabad.
- 5. Mudambi, S. R. and Rajagopal, M. V. (2008. Fundamentals of Foods, Nutrition & diet therapy by NewAge International Publishers, New Delhi

B. Sc. Microbiology 4th Semester

Program name	B. Sc. in MICROBIOLOGY			Semester	IV
Course Title	MICROBIAL ENZYMOLOGY AND METABOLISM (Theory)				
Course Code	DSC-7T		No. of Credits		04
Contact Hours	60 (4 Hrs. per	week)	Duration of SE	A/Exam (Hrs.)	2 ¹ / ₂
Formative Assessment Marks		40	Summative As	sessment Marks	60

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Differentiating concepts of chemo heterotrophic metabolism and chemo lithotrophic metabolism.
- 2. Describing the enzyme kinetics, enzyme activity and regulation.
- 3. Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms

Content of Course 4: DSC-7T, Microbial Enzymology and Metabolism	60 Hrs.	
Unit 1: Basics of Enzymes	15 Hrs.	
Enzymes- Definition, nomenclature and IUB system of classification. Definition of terms:		
enzyme unit, specific activity and turnover number. Enzyme types with example:	exo and	
endoenzymes, constitutive and induced enzymes, Monomeric, Oligomeric and Mu	ultimeric	
enzymes, Multi-enzyme complex, Isozyme, Lysozyme, Ribozymes, abzymes.		
Structure of enzyme: Apoenzyme, cofactors, prosthetic group-TPP, coenzyme-NAD	D. Active	
site- properties and role. Mechanism of enzyme action. Lock and key hypothesis and		
Induced Fit hypothesis. Enzyme catalysis: types and factors affecting the enzyme catalysed		
reaction. Enzyme kinetics- Michaeli's and Menten equation, Lineweaver-Burk plot.		
Unit 2: Enzyme regulation and Microbial enzymes	15 Hrs.	
Enzyme inhibition: Reversible- Competitive, non-competitive and uncompetitive inhibition.		
Irreversible and Feedback inhibition. Enzyme regulation: Allosteric enzyme -	general	
properties, Hill equation. Regulation of multi-enzyme complex- Pyruvate dehydrogenase.		
Microbial enzymes: source- fungal, bacterial and yeast. Production, Purification and		
isolation of microbial enzymes. Application of microbial enzymes- Pharmaceutical, Food and		
Feed industry, Paper and Pulp industry, Leather and Textile industry, Enzymes in cosmetics		
and detergents. Microbial enzymes as therapeutic agents: Anti-inflammatory, Antibacterial		
(Enzybiotics, Fibrinolytic enzymes) and Anticancer enzymes, Enzymes as digestive aids.		
Unit 3: Metabolism of Carbohydrates	15 Hrs.	
Chemoheterotrophic Metabolism- Sugar degradation pathways i.e. EMP, ED, Pentose		
phosphate pathway. TCA cycle. Utilization of Lactose, Maltose, Cellulose and Pectin.		
Fermentation: Concept of linear and branched fermentation pathways.		
fermentation and Pasteur effect, 2, 3-butanediol fermentation, acetate Fermentation. Chemolithotrophic Metabolism: Hydrogen oxidation, Sulphur oxidation, Iron oxidation.		
Chemonulourophic Metabolism: Hydrogen oxidation, Sulphur Oxidation, Iron ox	kiuation.	

Anaerobic respiration with special reference to assimilatory sulphate reduction.			
Unit 4: Metabolism of Nitrogen, Amino acids, Lipids and Carbon compounds	15 Hrs.		
Nitrogen metabolism: Biological nitrogen fixation- nodulation in leguminous	plants,		
Nitrogenase, leghaemoglobin, Ammonia assimilation. Assimilatory nitrate re	duction,		
dissimilatory nitrate reduction, denitrification.			
Biosynthesis of non-essential amino acids and Amino acid degradation.			
Biosynthesis of long chain fatty acids- plamitate and lipid degradation (beta oxidation).			

Metabolism of carbon compounds: Methylotrophs- Oxidation of methane, methanol, methylamines. Carbon assimilation in methylotrophic bacteria. Methanogens. Acetic acid bacteria- Ethanol oxidation and sugar alcohol oxidation.

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessment for Theory			
Assessment Occasion/ type	Marks		
Attendance	10		
Seminar	10		
Debate/Quiz/Assignment	10		
Class test	10		
Total	40		
Formative Assessment as per gu	idelines are compulsory		

Course 4: Practical: DSC-8P, Microbial Enzymology and Metabolism

Course Title	MICROBIAL ENZYMOLOGY AND METABOLISM (Practical)			
Course Code	DSC-8P		No. of Credits	02
Contact Hours	60 (4 Hrs. per session)		Duration of SEA/Exam (Hrs.)	03
Formative Asses	sment Marks	25	Summative Assessment Marks	25

Practical Content

- 1. Sugar fermentation tests for bacteria
- 2. Separation of amino acids by paper chromatography
- 3. Identification of fatty acids and other lipids by TLC
- 4. Screening of fungi for cellulose degradation
- 5. Starch hydrolysis.
- 6. Isolation and characterisation of proteolytic bacteria from soil
- 7. Gelatin hydrolysis
- 8. Screening of fungi for invertase
- 9. Enzyme immobilization by Alginate method
- 10. Microscopic examination of root nodules
- 11. Demonstration of Ammonifiaction
- 12. Demonstration of Nitrification Nitrite and Nitrate
- 13. Demonstration of Denitrification
- 14. Demonstration of lipolytic activity
- 15. Demonstration of citric acid production
- 16. Study of photographs/models: Sulphur oxidation, Iron oxidation, Legume-*Rhizobium* system, Nitrogenase complex, Ribozymes, Abzymes, Lock and key hypothesis, Induced fit model, Competitive inhibition, Non-competitive inhibition, Allosteric enzymes, Feedback inhibition

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical			
Assessment Occasion/ type	Marks		
Class Records	05		
Test	10		
Attendance	05		
Performance	05		
Total	25		
Formative Assessment as per guidelines are compulsory			

Text Books / References

- 1. Philipp, G. Mannual of Methods for General Bacteriology.
- 2. David T. Plummer. An Introduction to Practical Biochemistry
- 3. Wood, W. B., Wilson, J.H., Benbow, R.M. and Hood, L.E. (1981). Biochemistry- A Problem Approach, 2nd ed., The Benjamin/ Cummings Pub.co
- 4. Segel, I.R. (2004). Biochemical calculations, 2nd ed., John Wiley and Sons
- 5. Irwin H. Segel. Biochemical Calculations, , 2nd Edition John Wiley & Sons

Course 4: Theory: OE- 4T, Human Microbiome

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Articulate a deeper understanding on biological complexities of human microbiome.
- 2. Understand broader goals of biological anthropology.
- 3. Compare and contrast the microbiome of different human body sites and impact human health promotion

Course 4: Theory: OE- 4T, Human Microbiome		
Unit 1: Introduction to Microbiome	14Hrs	
Evolution of microbial life on Earth, Symbiosis host-bacteria. Microbial associati	ion with	
plants and animals, Symbiotic and parasitic, Normal human microbiota and their role in		
health. Microbiomes other than digestive system.		
Unit 2: Microbiomes and Human health	14Hrs	
Microbiome in early life, Nutritonal modulation of the gut microbiome for metabolic health-		
role of gut mocrobiomes in human obesity, human type 2 diabetes and longevity.		
Probiotics- Criteria for probiotics, Development of Probiotics for animal and human use; Pre		
and synbiotics. Functional foods-health claims and benefits, Development of functional		
foods.		
Unit 3: Culturing of Microbes from Microbiomes	14Hrs	
Culturing organisms of interest from the microbiome: bacterial, archaeal, fungal, and yeast,		
viral. Extracting whole genomes from the microbiome to study microbiome diversity		
Microbiomes and diseases: Microbiome and disease risks: The gut microbiome and host		

Text Books / References

1. Angela E Douglas, (2018). Fundamentals of Microbiome Science: How Microbes Shape Animal Biology. Princeton University Press. 248pp.

immunity, bacteriocins and other antibacterials. Human microbiome research in nutrition

- 2. Giulia Enders and Jill Enders, (2018). Gut: The Inside Story of Our Body's Most Underrated Organ (Revised Edition). Greystone Books, 304pp.
- 3. Emeran Mayer, (2018). The Mind-Gut Connection: How the Hidden Conversation within our bodies impacts our mood, our choices, and our overall Health. Harper Wave, 336pp.
- 4. Edward Ishiguro, Natasha Haskey and Kristina Campbell, (2018). Gut Microbiota. 1st edition. 2008pp.
- Natalia V Beloborodova, (2021). Human Microbiome. IntechOpen, 166pp. Gregory, P. H. (1961). The Microbiology of the atmosphere. Interscience Publishers, New York.

SCHEME OF PRACTICAL EXAMINATION

III SEMESTER (NEP)

PRACTICAL III: Microbial Diversity

Time: 03 Hours

Max. Marks: 25

1. Demonstrate the experiment A by giving principle and procedure. Record the result. 08 marks

(Measurement of microbial cell size by Micrometry / Isolation and characterization of bacteria from air by exposure plate method / Isolation of enumeration of bacteria from soil or water by serial dilution method / Isolation and identification fungi from air by exposure plate method / Isolation and identification of fungi from soil by serial dilution method)

(Demonstration - 2M, Principle - 2M, Procedure - 2M, Result - 2M)

2. Prepare a temporary mount of the given material B and identify the organism with labelled diagram and significance. Leave the preparation for evaluation 05 marks

(Staining of Fungi / Algae / Cyanobacteria)

(Preparation – 1 M, Identification – 1M, Diagram and significance – 3M)

3. Write critical notes on C, D, E and F

4x2 = 08 marks

(Permanent slides or photographs of Paramecium, Euglena, TMV, Corona, T4 phage, Oncogenic virus, Actinomycetes, Aspergillus, Rhizopus, Sachharomyces, Agaricus, Chlorella, Diatoms, Gracilaria, Nostoc, Microcystis, Spirulina)

4. Viva-voce

04 marks

SCHEME OF PRACTICAL EXAMINATION IV SEMESTER (NEP)

PRACTICAL IV: Microbial Enzymology and Metabolism

Time: 3 hrs.

Max. Marks: 25

1. Demonstrate the experiment A giving principle and procedure. Record the result. 08 marks

(Separation of amino acids by paper chromatography / Screening of fungi for invertase / Enzyme immobilization by Alginate method / Screening of fungi for cellulose degradation / Microscopic examination of root nodules / Identification of fatty acids and other lipids by TLC)

(Demonstration - 2M, Principle - 2M, Procedure - 2M, Result - 2M)

2. Conduct the given biochemical test B giving principle and procedure. Write the significance. 05 marks

(Gelatin hydrolysis / Starch hydrolysis / Demonstration of Ammonification / Nitrification / Denitrification / Lipolytic activity / Sugar fermentation / Demonstration of citric acid production)

(Demonstration – 2M, Principle and Procedure – 2M, Significance – 1M)

3. Write critical notes on C, D, E and F

4x2 = 08 marks

(Study of photographs/models: Sulphur oxidation, Iron oxidation, Legume-*Rhizobium* system, Nitrogenase complex, Ribozymes, Abzymes, Lock and key hypothesis, Induced fit model, Competitive inhibition, Non-competitive inhibition, Allosteric enzymes, Feedback inhibition)

4. Viva-voce

04 marks