Telephone No. 2419677/2419361 Fax: 0821-2419363/2419301

e-mail : registrar@uni-mysore.ac.in www.uni-mysore.ac.in

UNIVERSITY 🍩 OF MYSORE

Estd. 1916

VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570 005 Dated: 01.09.2023

No.AC2(S)/151/2020-21

Notification

Sub:- Syllabus and Scheme of Examinations of Environmental Science (UG) (V & VI Semester) with effect from the Academic year 2023-24.

Ref:- 1. This office letter No: AC6/303/2022-23 dated: 28-07-2023.

2. Decision of BOS in Environmental Science (UG) meeting held on 29-08-2023.

The Board of Studies in Environmental Science (UG) which met on 29-08-2023 has resolved to recommended and approved the syllabus and scheme of Examinations of Environmental Science programme (V & VI Semester) with effect from the Academic year 2023-24.

Pending approval of the Faculty of Science & Technology and Academic Council meetings the above said syllabus and scheme of examinations are hereby notified.

The syllabus and scheme of Examinations contents may be downloaded from the University website i.e., <u>www.uni-mysore.ac.in</u>.

To:-

- 1. All the Principal of affiliated Colleges of University of Mysore, Mysore.
- 2. The Registrar (Evaluation), University of Mysore, Mysuru.
- 3. The Chairman, BOS/DOS, in Environmental Science, Manasagangothri, Mysore.
- 4. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
- 5. The Director, PMEB, Manasagangothri, Mysore.
- 6. Director, College Development Council, Manasagangothri, Mysore.
- 7. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
- 8. The PA to Vice-Chancellor/ Registrar/ Registrar (Evaluation), University of Mysore, Mysuru.
- 9. Office Copy.

GOVERNMENT OF KARNATAKA

Report on

Proposed Curricular Framework for Under graduate

Programme in Universities of Karnataka State

in

ENVIRONMENTALSCIENCE

Submitted to

Karnataka State Higher Education Council Government of Karnataka Bengaluru

June2023

GOVERNMENTOFKARNATAKA

Reporton

Proposed Curricular Framework for Undergraduate

Programme in Universities of Karnataka State

in

ENVIRONMENTALSCIENCE

Submittedby				
Dr.N.	Nandini	Smt. Akshatha Chandra, G. M		
Chair	person, Subject	Member Convenor,		
Exper	tCommittee - Environmental	Subject Expert Committee-		
Scien	ce, Professor, Dept. of	Environmental Science		
Enviro	onmental Science,Bangalore	Special Officer, Karnataka State Higher		
Unive	rsity,Bengaluru.	Education Council Bengaluru and		
		Coordinator, Environmental Science		
		Committee		
		and		
	Members of Subject Expert Co	mmittee-Environmental Science		
1.	1. Dr.N.S.Raju , Professor, Department of Studies in Environmental Science, University of Mysore, Mysuru.			
2.	 Dr. K. L. Prakash, Professor, Department of Environmental Science, Bangalore University, Bengaluru. 			
3.	Dr. S. Suresha , Professor, Depart College(Autonomous), University	tment of Environmental Science, Yuvaraja's of Mysore,Mysuru.		
4.	Dr.B.S.Prabhakar , Associate Pro Science, St.Joseph's University, Be	fessor, Department of Environmental ngaluru.		

June2023

PREFACE

Education empowers life and life systems. A holistic education paradigm will effectively focus on developing knowledge, employable skill sets, appropriate attitudes and an overall personality. A graduate is the one who acquires the following attributes and employs them to benefit societies.

- Skills of identifying a problem and factors responsible for the problem
- Acquires and appreciates problem solving skills
- Logically employs problem solving tools, spatially and temporally
- Identifies timely needs of the community and contributes to them
- Works towards creating employment opportunities and work domains for different skill sets and knowledge disciplines
- Blends with various social and economic situations making life happier for the self and of the communities
- Envisages and employs various attitudes and skill sets for the betterment of the Nation, blending local and regional variations

Environmental Science is adomain which seamlessly connects the sciences withday-to-day societal demands. Proposing and developing a curriculum for the subject of Environmental Science is unique in many ways.Mank in disfacing serious environmental issues like climate change,desertification, deforestation, pollution, solid waste generation, natural and man-made disasters.

Improving the quality of life is a process of development which includes teaching, training and instruction. A competent subject expert committeewasconstitutedbyKarnatakaStateHigherEducationCouncil,Government of Karnataka to achieve these objectives. The assigned task of this committee was to design curriculum structure for both

- ✓ Under-Graduate and Post-Graduate programmes of Environmental Science
- ✓ Environmental Studies–SEC for all Under-Graduate courses

The proposed curricular framework designed by this committee was headed by me with Eminent Educationalists in the field of Environmental Science.

SUBJECTEXPERTCOMMITTEE-ENVIRONMENTALSCIENCE					
Name	Designation and address	Position			
Dr.N.Nandini	Professor Department of Environmental Science, Bangalore University,Bengaluru	Chairperson			
Dr.N.S.Raju	Professor Department of Studies in Environmental Science, University of Mysore, Mysuru	Member			
Dr.K.L.Prakash	Professor Department of Environmental Science, Bangalore University, Bengaluru	Member			
Dr.S.Suresha	Professor and Head Department of Environmental Science, Yuvaraja's College (Autonomous) University of Mysore, Mysuru	Member			
Dr.B.S.Prabhakar	Associate Professor Department of Environmental Science, St.Joseph'sUniversity,Bengaluru	Member			
Smt. AkshathaChandra, G.R.	Special Officer Karnataka State Higher Education Council, Government of Karnataka	Member Convenor			

The Chairpersons of Board of Studies, Board of Examiners (Environmental Science) and Subject experts teaching under-graduate and post-graduate courses of various Universities in the State of Karnataka, who have participated active lyin this process are-**Dr.N.S.Raju**,Professor,Department of Studies in Environmental Science, University of Mysore, Mysuru; **Dr. B. S. Prabhakar**, Associate Professor, St.Joseph's University, Bengaluru; **Dr.J.Narayana**, Professor, Department of Environmental Science, Kuvempu University, Shankaraghatta; **Dr.K.L.Prakash**, Professor, Department of Environmental Science, Bengaluru University, Bengaluru; **Dr. G. V. Venkataramana**, Professor, Department of

Studies in Environmental Sciences, University of Mysore, Mysuru; Dr. S. **SrikantaSwamy**, Professor, DepartmentofEnvironmentalScience, University of Mys ore, Mysuru; Dr. Yogendra, K., Associate Professor, Department of Environmental Science, Kuvempu University, Shankaraghatta; Dr.Prakash Kariajjanavar, Assistant Professor, Department of Environmental Science, Gulbarga University, Kalaburagi; Dr. B.C.Nagaraja, Professor, Department of Environmental Science, Bengaluru University, Bengaluru; Dr. J. S.Chandrashekar, Assistant Professor, Department of Environmental Science, Karnataka State Open University, Mysuru; Dr. T. S. Harsha, Assistant Professor, Department of Environmental Science, Karnataka State Open University, Mysuru; Dr. Basavarajappa, S.H., Assistant Professor, Department of Environmental Science, Kuvempu University, Shankaraghatta; Dr.M.R.EbenezerWilson, Associate Professor, St. Joseph's College (Autonomous), Bengaluru; Dr. HelenRoselene, Associate Professor, Department of Environmental Science, Mount C armel College (Autonomous), Bengaluru; and Dr. K. Harish Kumar, Assistant Professor, Department of Environmental Science, Government First Grade College, Hosakote; Dr.Kumar,M., Faculty, Department of Environmental Science, Bangalore University, Bengaluru; Dr.AlaknandaJ.Adur, Assistant Professor, St. Joseph's University, Bengaluru, Bengaluru; Dr. М. Raghavendra, Sri.S.NiranjanKumar, Smt. NeethiNair and Sri.Vishnu,H.V., from Department of Environmental Science, Bangalore University, Bengaluru. This work progressed under the guidance of Shri. L. S. Ramesh and Dr. Jayappa, M., Special Officers, Karnataka State Higher Education Council, Government of Karnataka, initially and later steered by Smt. Akshatha Chandra, G. R., Special Officer, Karnataka State Higher Education Council, Government of Karnataka.

The valuable support from subject experts **Dr. B. S. Prabhakar**, Associate Professor and Head, Department of Environmental Science, St.Joseph's University, Bengaluru and **Dr.Kumar,M**.,Faculty, Department of Environmental Science, Bangalore University, Bengaluru, in compiling there port and overall editing is appreciated.

I take this opportunity to express my gratitude to the authorities of

Karnataka State Higher Education Council, Government of Karnataka for giving us an opportunity to be a part of curriculum framework design.

Prof.N.Nandini

Chairperson Subject Expert Committee – Environmental Science Karnataka State Higher Education Council Government of Karnataka

MODELCURRICULUM

Name of the Degree Programme: B.Sc.(Basic/Hons.)

Discipline Core: **Environmental Science**

Total Credits for the Programme: **193**

Startingyearofimplementation:2021-22

ProgrammeOutcomes:

By the End of the Programme the students will be able to develop:

- 1. Disciplinary knowledge in fields related to Environmental Science
- 2. Systemic and critical thinking with reference to environment-peopleeconomic-development attributes
- 3. Problem identification skills and sustainable solution provisioning
- 4. Analytical reasoning and appropriate interpretation skills
- 5. Self-directed learning efficiencies leading to a productive lifelong learning process
- 6. Research-related skills such as review of literature, design of experiments, statistical competence, report writing and prepare target specific communication packages
- 7. Cooperation/Teamwork
- 8. Reflective thinking
- 9. Multidisciplinarycompetencecateringtoenvironmentalsustainability

Assessment:

Weightageforassessments(inpercentage)

TypeofCourse	FormativeAssessment/IA	SummativeAssessment
Theory	40	60
Practical	25	25
Project/Experiential	Report=50	
Learning (Internshipetc.)	 Relevance of the topic=05 Robustness of literature review = 10 Appropriateness of Methodology=10 Results, Discussion and Interpretation=20 Referencing and citation=05 	Viva-voce=50 - Presentation skills= 25 - Question answer=25

PROPOSED CURRICULUM STRUCTURE FOR UNDER GRADUATE ENVIRONMENTAL SCIENCE DE GREEPROGRAMME

<u>B2.Curriculum and Credit Frame work for Under graduate Programme with two cores ubjects with practicals (SayA&B)</u> in the first two years, and two theory and two practical's papers in each core subjects in 3rdyear.

Sem.	Discipline Specific- Core(DSC),Elective(DSE) Courses (Credits)(L+T+P)	Minor/Multidisciplinary/ Open Elective (OE)Courses(Credits)(L+ T+P)	Ability Enhancement Courses (AEC)(Credits) (L+T+P)(Languages)	Skills Enhancement Courses (SEC) (Credits) (L+T+P)/Value Added Courses(Credits)(L+T+P)(common for all UG Programs)/Summer Internship.			
I	DSCEnv.Science -A1(4),A2(2) Other Core- B1(4),B2(2)	OE-1 (3)	L1-1(3),L2-1(3) (4hrseach)	SEC-1 : Digital Fluency(2)(1+0+2)/ Env. Studies (3)	Health,Wellness&Yoga(2)(1+0+2)	25/2 6	
II	DSCEnv.Science -A3(4),A4(2), Other Core- B3(4),B4(2)	OE-2 (3)	L1-2(3),L2-2(3) (4hrseach)	Env.Studies(3)/SEC-1: Digital Fluency(2)(1 +0+2)	Sports/NCC/NSS/R&R(S&G)/Cult ural(2)(0+0+4)/SEC(2)	26/2 5	
Stu voca	idents exiting the program itional courses during sur	mme after securing 46 cred nmer term or internship/A	its will be awarded UC pprenticeship in addit	G Certificate in Disciplines A ion to 6 credits fromskill-b	A and B provided they secure 4 credits in work t asedcoursesearnedduringthefirstyear.	based	
III	DSCEnv.Science -A5(4),A6(2), Other Core- B5(4),B6(2)	OE-3 (3)/ India andIndianConstitutio n(3)	L1-3(3),L2-3(3) (4hrs. each)	SEC-2 : AI/FinancialEdu. & Inv. Aw. (2)(1+0+2)	Sports/NCC/NSS/R&R(S&G)/Cult ural(2)(0+0+4)/SEC(2)	25	
IV	DSCEnv.Science -A7(4),A8(2), Other Core- B7(4),B8(2)	IndiaandIndian Constitution (3) / OE-3(3)	L1-4(3),L2-4(3) (4hrs. each)	SEC-3: Financial Edu. &Inv.Aw./AI(2)(1+0+ 2)	Sports/NCC/NSS/R&R(S&G)/Cult ural(2)(0+0+4)/SEC(2)	25	

Studentsexitingtheprogrammeaftersecuring92creditswillbeawardedUGDiplomainDisciplinesAandBprovidedtheysecureadditional4creditsins killbasedvocationalcoursesofferedduringthefirst- orsecond-yearsummerterm.

V	DSCEnv.Science- A9(4),A10(2), A11(4),A12(2),	Employability skill SEC-4: Integrated Solid Waste Management (2+2)	24			
VI	DSC Env. Science A13(4),A14(2), A15(4),A16(2),	Internship(2)	24			
	Students exiting the programme after 3-years will be awarded UG Degree in Discipline A with Discipline B as Minor upon securing 136 credits and satisfying the minimum Credit requirements under each category of courses prescribed.					

Note:*L+T+P=Lecturing in Theory+Tutorial+Practicals.

*Inlieuoftheresearchproject,twoadditionalelectivepapers/Internshipmaybeoffered

Numbers in the parenthes is refer to credits.

CURRICULUMSTRUCTUREFORTHEUNDERGRADUATEDEGREEPROGRAMME-B.Sc.INENVIRONMENTALSCIENCE

Total Credits for the Programme:**193**

Starting year of implementation:2021-2022

Name of the Degree Programme: B.Sc.(Basic/Hons.)

Discipline/Subject: Environmental Science

ProgrammeArticulationMatrix

PROPOSED CURRICULUM STRUCTURE FOR UNDER GRADUATE IN ENVIRONMENTAL SCIENCE DEGREE PROGRAMME

<u>B2.CurriculumandCreditFrameworkforUndergraduateProgrammewithtwocoresubjectswithpracticals(SayA&B)</u>inthefi rsttwoyears,andtwo theory and two practicals papers in each core subjects in 3rdyear.

Semest er	Title/Name ofthecourse&Credits	Programmeoutcomesthatthecourseaddresses(n otmorethan3percourse)	Pre- requisite course (s)	Pedagogy	Assessment
1	DSCENVC1-T- DIVISIONSOFENVIRONMEN T(4)	Have developed knowledge and understanding of the Divisions of the Environment and able to appreciate the holistic relationship between them.	ivalentinSci jects	Theoryand courseprojects	InternalA assessment)- SemesterE (Summative)-60%
I	DSCENVC2-P- WATERQUALITYANALYSIS(2)	Be able to analyse the vital physicochemicalparametersofwater,interpretands uggestsuitabletreatmentmethods.	PUCorequi encesub	Hands-on- training	Continuous ssessment (Formative: 40%.End xamination assessment

	ES OE1-T- ENVIRONMENTALCONSERVA TION MOVEMENTS(3) OR ES OE1-T- ENVIRONMENTALPOLLUTIO N(3)	Be able to get an introductory account of the Chosen open elective paper and use the acquired knowledge in decision making and hence add to quality of life.		Theory,case studies andself- study	
Semester	Title /Nameofthe course	Programmeoutcomesthatthecourseaddresses(n otmorethan3percourse)	Pre- requisite course(s)	Pedagogy	Assessment
	DSC ENV C3-T- ECOLOGY – THEORYANDPRACTICE(4)	Have developed sound knowledge of Basic and Applied Ecology.		Theory, case studies and Course projects	ient %. 1)%
2	DSCENVC4-P- ECOLOGICALANALYSIS(2)	Be able to Identify and Enumerate Planktons, Estimate the Primary Productivity of an Aquatic Ecosystem, study the characteristics of a Biotic Community; Be able to Compute Carbon Sequestration of trees.	-	Hands-on- training	Internal Assessm assessment)-40' aster Examination e assessment)-60
	ES OE2-T-CLIMATE CHANGEANDITS IMPLICATIONS(3) OR ES OE2-T-ENVIRONMENT ANDPUBLIC HEALTH INCONTEMPORARYSOCIETY(3)	Be able to get an introductory account of the Chosen open elective paper and use the acquired knowledge in decision making and hence add to quality of life.		Theory,Case studies andSelf- study	Continuous l (Formative End Seme (Summative
		Exitoption with Certificate in Science(51credi	its)		
		Job opportunities for the Exit option with Certif	ficate		

- $Sampling \ Assistant in was tewater treatment plants$ •
- AnalyticalAssistant/Internanalystinwatertestinglaboratories
 Laboratoryinstructorinineducationalinstitutions
 FieldTechnicianinmobileenvironmentallaboratories

- FieldTechnicianinResearchinstitutions/NGOsinvolvedinenvironmentalmonitoring/carboncreditestablishment/productivitystudies.
- Samplingandexecutionassistantinenvironmentalauditing
- Garden/nurserySupervisor/Entrepreneurship
- NGOs/Consultancyfirms
- Self-employment

Semester	Title /Nameofthe course	Programme outcomes that the course addresses(notmorethan3percourse)	Pre- requisite course(s)	Pedagogy	Assessment
	DSCENVC5-T-NATURAL RESOURCESANDMANAGEMENT(4)	Have developed a sound knowledge and understanding of Natural Resources and Application of various management practices.	vith candatotalcre	Theory, case studies and problem solving methods	isment 40%. tion -60%
3	DSCENVC6-P-MINERALOGY, PETROLOGY, ENERGY RESOURCESANDMEDICINALPLAN TS(2)	Be able to Identify Major Rock Forming Minerals and Rocks. Learn basic skills of mapping and cartography.	e in Science w nceasasubject scoreof50	Hands-on-training and field studies	nternal Asses assessment)- ster Examinat assessment)
	ESOE3-T- WOMENANDENVIRONM ENT(3) OR ES OE3-T- ENVIRONMENTALDISASTERS AND MANAGEMENT(3)	Be able to get an introductory account of the Chosen open elective paper and use the acquired knowledge in decision making and hence add to quality of life.	Certificat EnvironmentalScie dit	Theory, Case studies and Self- study	Continuous I (Formative End Seme (Summative

*Note: Universities are free to opt for one of the papers among OE3OR India and Indian Constitution in third semester.

Universities which have chosen OE3 in third semester will offer India and Indian Constitution in the fourth semester and visaversa.

Semester	Title /Nameofthe course	Programme outcomes that the course addresses(notmorethan3percourse)	Pre- requisite course(s)	Pedagogy	Assessment
4	DSC ENV C7-T- BIODIVERSITY,WILDLIFEANDCON SERVATION(4)	Have developed an understanding of the Biodiversity resources, status of wildlife, the Pressures faced by wildlife areas and cultivate an insight into the conservation practices.		Theory, case studies and field studies	ormative %
	DSC ENV C8-P- BIODIVERSITYASSESSMENTA NDECOSYSTEMSERVICES(2)	Be able to analyse the behaviour of local weather patterns by monitoring meteorological parameters. Develop wind and pollution roses; analyze climate maps and make interpretations. Be able to execute sampling and data collection skills with reference to biodiversity and wildlife. Will have an exposure to wildlife monitoring technique such as quadrats, line transects and mark-release-re capture methods.		Data handling and Hands-on- training	nuous Internal Assessment (Fo assessment)-40%. End Semester Examination (Summative assessment)-60%
	ESOE4-T- Environment and sustainable Agriculture(3) OR	Be able to get an introductory account of the Chosen open elective paper and use the acquired		Theory, Case studies and Self- study	Contin

ES OE4-T- INITIATIVE FOR ENVIRONMENTAL MANGEMENT(3	Knowledge in decision making and hence add					
)	to quanty of me.					
*Note: Universities that have opted for one of the OE3 in the third semester will offer India and Indian Constitution in the fourth semester.						
Universities which have chosen Indi a	nd Indian Constitution in the third semester will	offer one of the OE3 in the fourth semester.				
ExitoptionwithDiplomainScience(1	ExitoptionwithDiplomainScience(101credits)ORChooseanyoneofthecoresubjectsasMajorandotherasMinor					
Job opj	portunities for the Exit option with Diploma in	Science				
 Procurement, processing, value addition 	onandMarketingofNTFPs-Executive/Entrepreneu	ırship				
 ProcurementofMedicinalPlants–Mar. 	keting/Entrepreneurship					
Labassistantineducationalinstitution	IS					
WildlifeandEcotourismguides						
PublicHealth/WasteManagementAssistantsinMunicipalities						
Incineratoroperatorsinsmallestablishments						
NGOs/Consultancyfirms						
• Self-employment						

Semester	Title /Name of thecourse	Programme outcomes that the course addresses(notmorethan3percourse)	Pre- requisite course(s)	Pedagogy	Assessment	
	DSCENVC9-T- AIRPOLLUTION,WATERPOLLUTIONA NDENVIRONMENTAL ENGINEERING(4)	Havedevelopedknowledgeandunderstandingo fAir,WaterandLand Pollutionand Application of control measures.	a total	Theory, Self- studyandCasestu dies	0%. 6	
5	DSCENVC10-P- AIRANDWASTEWATERANALYSIS(2)	Be able to analyse vital parameters of Wastewater, interpret and suggest suitable Treatment methods, analyse vital air pollutants, interpret and suggest suitable control methods.	e with Environmental Science as a subject and credits core of 100	ce as a subject and	Hands-on-training	tive assessment)-4 e assessment)-60%
	DSCENVC11-T-ENVIRONMENTAL CHEMISTRYANDINSTRUMENTATIO N(4)	Havedevelopedknowledgeandskillsonch emistryofenvironmentalpollution, Principles ofchemistryemployedintreatmentandmitigati onmechanisms. Beableto understandthegoverningprinciplesofanalytical procedureslikeTitrimetry, Gravimetry,Spectrophotometry,Flame PhotometryandAtomic Absorption Spectroscopy.		Theory, Self- studyandCasestu dies	s internal assessment (Form, ester Examination(Summati	
	DSCENVC12-P-SOIL ANALYSIS, NOISE MEASUREMENT AND SOLID WASTE ANALYSIS(2)	Beabletoanalysenoiselevels,identifyandcat egorieslandpollutionandbecapableof developingasolidwastemanagementplanforur banareas.	na in Scienc	Hands-on-training	Continuous i End Seme	
			Diplor		J	

Semester	Title /Nameofth ecourse	Programme out comes that the course addresses (not more than 3 percourse)	Pre- requisi te course(s)	Pedagogy	Assessme nt
6	DSCENVC13- TENVIRONMENTALMICROBI OLOGY and BIOTECHNOLOGY (4)	Have developed knowledge and understanding of Environmental Microbiology.		Theory andpracti ces	ent)- 60%
	DSCENVC14- PENVIRONMENTALMICROBI OLOGY and biotechnology(2)	Be able to culture and identify Bacteria and Fungi; be able to detect the faecal contamination of drinking water.		Hands-on- trainingan d practices	veassessm sessment).
	DSC ENV C15-T- ENVIRONMENTALIMPACT ASSESSMENT AND RISKASSESSMENT(4)	Have developed knowledge and understanding of various process involved in Environmental Impact Assessment, be able to employassessmenttechniquesandanalysetherepo rts.Havedevelopedknowledgetoenable Identification of risk perception and implement assessment protocols.		Theory,Self- studyandCas estudies	essment(Formati 40%. on(Summativeas
	DSCENVC16-P- METHODSOFENVIRONME NTAL IMPACTASSESSMENTAND RISK ASSESSMENT(2)	Be able to make appropriate choices of impact identification methodologies such as checklist and matrices. Be able to compile the collected data, suggest suitable amelioration measures and develop monitoring protocols.		Hands- on- training	uousinternalass nesterExaminat
			1		Continu EndSen

ExitoptionwithBachelorofScience,B.Sc.DegreeinEnvironmentalScience(149credits)o

Job opportunities for the Exit option with Bachelor of Science Degree

- Assistants in Central and State Pollution Control Boards
- EnvironmentalHealthandSafetyAssistantinindustries
- OccupationalHealthandSafetyAssistantinindustries/themeparks
- PublicHealth/WasteManagementOfficersinMunicipalities
- WastewaterTreatmentPlantManagers
- Environmental/ProductionQualityAssuranceExecutive-Junior
- EnvironmentalAnalyst(Validation)
- ResearchAssistant/Staff
- R&DLabAssistant
- Watertestinglabsor chemicalsuppliers/Entrepreneurship
- LiaisonOfficer
- WatershedManagementAssistant
- Mineral/EnergyResourceExplorationAssistant
- Solarenergy/alternateenergyExecutives
- MicroirrigationExecutives
- OrganicFarmingExecutives/Entrepreneurship
- NGOs/Consultancyfirms

- TeachersinSchools
- Self-employment

SYLLABUS – Theory and Practical's for Bachelor of Science degree in Environmental Science

B.Sc.(Basic/Hons.) Semester5

Title of the Course:DSCENVC9-T-AIRPOLLUTION,WATER POLLUTION AND
ENVIRONMENTAL ENGINEERING

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of practical hours/semester
4	60	2	60

Programme Specific Objectives			
PSO1	To develop competency in understanding the concepts of pollution and pollutants.		
PSO2	To instill an introductory knowledge of engineering concepts for controlling the pollution.		
PSO3	To motivate and inspire to acquire contemporary understanding and skills leading to issue identification.		
PSO4	To develop knowledge on act and rules related to pollution.		

Programme Outcomes			
P01	Demonstrate an entry level competence in understanding the environmental pollutants and their impacts.		
P02	Demonstrate the ability to carry out air and water quality analysis in the laboratory and interpret the results.		
P03	Ability to understand the harmful impact of pollutants on environment and human health.		
P04	Be able to understand the existing treatment technologies and scope of developing these methods.		

Content of Theory Course	60 Hours
Unit-1	15
Meteorology : Definition, Significance of meteorology. Meteorological parameters:Solarradiation,Temperature,Humidity(Absolute,Specific&Rela tive),Windspeed&direction,Pressure and Precipitation.	
Air pollution : Definition. Sources of air pollution (Point and non-point).Classification of air pollutants –Particulates, gaseous and aerosols.	
Meteorology of air pollution: Air shed – Concept and Scope. Atmospheric stability, Temperature inversions. Plume Behavior.	
Effects of air pollution on humans, plants and materials(CO,CO ₂ ,SO _x , NO _x , PAN, Ground level Ozone, $PM_{<10\mu m}$, $PM_{<2.5\mu m}$, $PM_{<1\mu m}$, Acid rain and Photochemical reactions-O ₃ &Smog)in atmosphere.	
Respiratory and cardiovascular diseases, neuro psychiatric complications, the eyes irritation, skin diseases and long-term chronic diseases. Pneumoconiosis.	
Automobile pollution : Definition. Sources–Petrol, Diesel, LPG, CNG, Biodiesel, Ethanol, Hydrogen and Fuel cells. Emerging fuels – Biobutanol, Dimethyl ether, Methanol and Renewable hydrocarbon biofuels.	
Internal Combustion Engines (Two stroke and Four stroke: Carburettor and Fuel Injection systems) – Exhaust emissions, Evaporative emissions and Crank case blow-by.	
Effects and control of automobile pollution.	
Unit-2	13

Air Pollution Control Engineering; Definition; Sources, Types of emission, Control of emissions from engines	
Monitoring and Control of Air Pollution: Scope and significance.	
Air Sampling: Ambient, Indoor and Stack-Gaseous and particulates.	
National Ambient Air Quality Monitoring Programme (NAQMP)– Introduction, Guidelines for Sampling and Measurement o f notified Ambient Air Quality Parameters (NAAQS), National Ambient Air Quality Standards.	
Bharat Stage Emission Standards (BSES)–Introduction, Timeline of Implementation of BSES in India. Current Emissions norms.	
Air Quality Indices.	
Concept of Air Pollution Tolerance Index and Industrial	
Greenbelts. Gaseous–Absorption, Adsorption and Condensation.	
Particulate–Settling Chambers, Inertial Separators, Cyclones, Filters (Baghouse), Electrostatic Precipitators and Scrubbers.	
Salient features of Air Pollution (Prevention and Control) Act, 1981 and latest amendments;	
National CleanAll Programme2019 and latestamendments.	
Unit-3	12
Unit-3Waterpollution:Definition,Sources(Pointandnon-	12
Unit-3Waterpollution: point).ClassificationofWaterPollutants.Definition,Sources(Pointandnon- ClassificationofWaterPollutants)	12
Unit-3Waterpollution:Definition,Sources(Pointandnon-point).ClassificationofWaterPollutants.Heavymetalpollution:Sources/Causes,EffectsandControlMeasureswithreferencetoLead and Mercury.	12
Unit-3Waterpollution:Definition,Sources(Pointandnon- point).ClassificationofWaterPollutants.Heavymetalpollution:Sources/Causes, EffectsandControlMeasureswithreferencetoLead and Mercury.Fertilizer pollution:Sources/Causes, Effects and Control Measures with reference to Nitrogen, Phosphorus and Potassium. Agriculture runoff and detergents as pollutants. Eutrophication.	12
Unit-3Waterpollution:Definition,Sources(Pointandnon- point).ClassificationofWaterPollutants.Heavymetalpollution:Sources/Causes, EffectsandControlMeasureswithreferencetoLead and Mercury.Fertilizer pollution:Sources/Causes, Effects and Control Measures with reference to Nitrogen, Phosphorus and Potassium. Agriculture runoff and detergents as pollutants. Eutrophication.Pesticide pollution:Sources/Causes, Effects and Control Measures with reference to Organo-chlorine and Organo-phosphatepesticides.	12
Unit-3Waterpollution:Definition,Sources(Pointandnon-point).ClassificationofWaterPollutants.Sources/Causes,Heavymetalpollution:Sources/Causes,EffectsandControlMeasureswithreferencetoLead and Mercury.Fertilizer pollution:Sources/Causes, Effects and Control Measures withreference to Nitrogen, Phosphorus and Potassium. Agriculture runoff and detergents as pollutants. Eutrophication.Pesticide pollution:Sources/Causes, Effects and Control Measures with reference to Organo-chlorine and Organo-phosphatepesticides.Thermalpollution:Sources/Causes,EffectsandControlMeasures.Oilpo	12
Unit-3Waterpollution:Definition,Sources(Pointandnon-point).ClassificationofWaterPollutants.Heavymetalpollution:Sources/Causes,EffectsandControlMeasureswithreferencetoLead and Mercury.Fertilizer pollution: Sources/Causes, Effects and Control Measures withreference to Nitrogen, Phosphorus and Potassium. Agriculture runoff anddetergents as pollutants. Eutrophication.Pesticide pollution: Sources/Causes, Effects and Control Measures withreference to Organo-chlorine and Organo-phosphatepesticides.Thermalpollution:Sources/Causes,EffectsandControlMeasures.Oilpollution:Sources/Causes,EffectsandControlMeasures.	12
Unit-3Waterpollution:Definition,Sources(Pointandnon-point).ClassificationofWaterPollutants.Heavymetalpollution:Sources/Causes,EffectsandControlMeasureswithreferencetoLead and Mercury.Fertilizer pollution:Sources/Causes, Effects and Control Measures withreference to Nitrogen, Phosphorus and Potassium. Agriculture runoff and detergents as pollutants. Eutrophication.Pesticide pollution:Sources/Causes, Effects and Control Measures with reference to Organo-chlorine and Organo-phosphatepesticides.Thermalpollution:Sources/Causes, Effects and Control Measures.Oilpollution:Sources/Causes, Effects and Control Measures.Oilpowith reference to Nitrate, Fluoride and Arsenic.	12
Unit-3Waterpollution:Definition,Sources(Pointandnon-point).ClassificationofWaterPollutants.Heavymetalpollution:Sources/Causes,EffectsandControlMeasureswithreferencetoLead and Mercury.Fertilizer pollution:Sources/Causes, Effects and Control Measures withreference to Nitrogen, Phosphorus and Potassium. Agriculture runoff and detergents as pollutants. Eutrophication.Pesticide pollution:Sources/Causes, Effects and Control Measures with reference to Organo-chlorine and Organo-phosphatepesticides.Thermalpollution:Sources/Causes,EffectsandControlMeasures.Oilpollution:Sources/Causes,Effects and Control MeasuresGround water pollution:Sources/Causes, Effects and Control Measureswith reference to Nitrate, Fluoride and Arsenic.Coliform contamination of water.	12
Unit-3Waterpollution:Definition,Sources(Pointandnon-point).ClassificationofWaterPollutants.Heavymetalpollution:Sources/Causes,EffectsandControlMeasureswithreferencetoLead and Mercury.Fertilizer pollution:Sources/Causes, Effects and Control Measures withreference to Nitrogen, Phosphorus and Potassium. Agriculture runoff anddetergents as pollutants. Eutrophication.Pesticide pollution:Sources/Causes, Effects and Control Measures withreference to Organo-chlorine and Organo-phosphatepesticides.Thermalpollution:Sources/Causes,EffectsandControlMeasures.Oilpollution:Sources/Causes,Effects and Control MeasuresGround water pollution:Sources/Causes, Effects and Control Measureswith reference to Nitrate, Fluoride and Arsenic.Coliform contamination of water.Unit-4Init-4	12
Unit-3Waterpollution:Definition,Sources(Pointandnon-point).ClassificationofWaterPollutants.Heavymetalpollution:Sources/Causes,EffectsandControlMeasureswithreferencetoLead and Mercury.Fertilizer pollution:Sources/Causes, Effects and Control Measures withreference to Nitrogen, Phosphorus and Potassium. Agriculture runoff and detergents as pollutants. Eutrophication.Pesticide pollution:Sources/Causes, Effects and Control Measures with reference to Organo-chlorine and Organo-phosphatepesticides.Thermalpollution:Sources/Causes, Effects and Control Measures.Ilution:Sources/Causes, Effects and Control Measures.Ground water pollution:Sources/Causes, Effects and Control Measureswith reference to Nitrate, Fluoride and Arsenic.Coliform contamination of water.Unit-4Water and Wastewater Engineering:	20

Characteristics of domestic and industrial wastewater: <i>Physical</i> – Color, Odour, Turbidity, Temperature and Solids(Dissolved, Suspended, Settleable, Volatile; MLSS & MLVSS); <i>Chemical</i> – Organic, Inorganic andVolatile Organic compounds ;and <i>Biological</i> –Coliforms and other organisms. Treatment of water for potable purposes: Intake, screening, aeration, pre- chlorination, coagulation, flocculation, sedimentation, filtration (SSF and RSF),disinfection and distribution.	
Preliminary and Primary treatment: Screening (fine, medium and coarse – stationary, moving and movable – disposal of screenings), pumping, gritremoval (sedimentation tank and detritustan k-types;disposal of detritus) and skimming.	
Secondary treatment: Activated Sludge Process and Tricking filters. Sludge management.	
Tertiary treatment: Chlorination; Reverse Osmosis, Activated Carbon.	
Advanced treatment methods: Filtration, ion exchange, activated carbon adsorption, electro dialysis, nitrification, de-nitrification and Phosphorous removal.	
Othertreatmentmethods:Oxidationponds;oxidationditches;septictanksAnaerobiclagoons,AnaerobicfilterreactorsandUp-flowanaerobicdigesters. Disposal of sewage on land;disposal of sewage by dilution.	
Salient features of Water Pollution (Prevention and Control) Act,	
1974;and its characteristics	

References

AnjaneyuluYerramilli.(2019).*AirPollutionPreventionandControlTechnologies*.BSPublicati ons.1-828.

Bhatia, S.C. (2003). *Managing Industrial Pollution*. Macmillan India Ltd.

Crites, R.andGeorge, T.1998). *SmallandDecentralisedWastewaterManagementEnvironment alNoise Pollutionand itsControl*. Anmol Publications.

Garg, S.K. (1990). Environmental Engineering Voll&IISewage Disposal and AirPollution Engine ering, Khanna Publ. Delhi.

J.PaulGuyer.(2021). *AnIntroductiontoAirPollutionControlEngineering*. UNICORNPublishin gGroup.1-182.

Perkins, H.C. (1974). *AirPollution*. McGraw-HillKogakushaLtd.

- Phiri,N.B.(2021).*FactorsAffectingTutoringEffectivenessinFinance-RelatedModules*.University ofJohannesburg(SouthAfrica).
- Rao, M.N.and Rao, H.V.N. (1988). *AirPollution*. TataMcGraw–HillPublishingCo. Ltd.

Santra,C.S.(2001). *EnvironmentalScience*.(1stEd.), NewCentralBookAgency

Stern,A.C.(1986).*Airpollution*Vol.I–VIII.AcademicPressInc.

ContentofPracticalCourse5:ListofExperimentstobeconductedDSCEN

VC10-P-AIRANDWASTEWATERANALYSIS

(Total Teaching Hours=60;TotalCredits=2)

13 experiments can be chosen from the list below and incorporated into thesyllabusdeliveredindifferentInstitutionsbasedontheavailabilityofresources

- 1. Study of meteorological parameters– Light, Temperature, Pressure and Rain fall
- 2. Study of meteorological parameters–Relative Humidity, Wind Speed and Direction
- 3. Construction of a Windrose
- 4. Sampling techniques of air
- 5. Determination of Particulate Matter
- 6. Determination of Sulphur- di -oxideinambientair
- 7. Determination of Nitrogen-di-oxidein ambient air
- 8. Determination of Carbon-di-oxideinambient air
- 9. Calculate Air Quality Indices from secondary data sources
- 10. Sampling techniques of wastewater
- 11. Determination of totalsolids in wastewater
- 12. Determination of Chromiumin liquid effluents
- 13. Determination of Copper in liquid effluents
- 14. Determination of Iron in liquid effluents
- 15. Determination of BOD
- 16. Determination of COD

References

Donn,W.L.1975. Meteorology. McGraw-Hill Book Co.

Harrison, R.M. and Perry, R.1986. Handbook of Air Pollution Analysis. Chapman and Hall.

Kazt, M.1969. Measurement of AirPollutants. WHO.

NEERIManual.1982.AirQualityMonitoring.NEERIPublications.

Sawyer,C.N.andMcCarty,P.L.1978.ChemistryforEnvironmentalEngineering. McGraw–Hill International.

Stern, A.C. 1986. Airpollution Vol. I–VIII. Academic PressInc.

StandardMethodsforExaminationofWaterandWastewater.2012.APHA-WEF.

B.Sc.Semester:5

Title of the course: DSCENVC13-T-ENVIRONMENTAL CHEMISTRY AND INSTRUMENTATION

Number of theory credits	Number of lecture hours/semester
4	60

Programme Specific Objectives		
	Todevelopcompetencyinunderstandingthechemistryandtheprocesses in	
F301	environment.	
PSO2	To instill knowledge about the chemistry of soil and water.	
	To develop competency in understanding the instruments used for	
F303	analysis and the principles for developing the instruments.	
PS04	To be able to employ the developed skills in real-time situations.	

Programme Outcomes			
P01	Demonstrate competence in understanding the concepts and chemistry of elements interacting in the environment.		
PO2	Demonstrate the ability to carry out data collection procedures and analysis in field conditions/laboratories and make appropriate interpretations.		
PO 3	Be able to develop competence and academic skills in handling advance instruments.		
P04	To be able to apply skills in accordance with guidelines/standards prescribed by statutory authorities.		

Content of Theory course	60 Hours
Unit-1	15
Fundamentals of Environmental Chemistry: Concept and scope and of Environmental chemistry, Environmental segments, Structure of atoms, Gibbs energy ,chemical potential, acid-base reactions, solubility of gases in water, the carbonate system, unsaturated and saturated hydrocarbons, radio isotopes in the environment. Water chemistry- Water molecules and unique properties of water -specific heat, latent heat, thermal conductivity, expansion and freezing of water. Chemical reaction-acid base reactions in water.	
Unit-2	15

Atmospheric chemistry: Composition of elements in the atmosphere. Classification of elements, Definition, sources and types – gaseous pollutants and particulate matter; chemical speciation. Particles, ions and radicals in the	
particulate matters. Thermo chemical and photochemical reactions in the atmosphere. CFCs-types naming of CFCs and Ozone chemistry,	
Chemistry of air pollutants (Primary and secondary) and aerosols, Photochemical smog, London Smog and other case studies. Chemistry of acid rain formation and mechanism, ozone depletion mechanism.	
Unit-3 Water and Soil chemistry:	15
 Physico-Chemical Characteristics of Water Quality: Physical Parameters- Colour, temperature, taste and odour, turbidity, conductivity, hydrogen ion concentration (pH), total solids, suspended and dissolved solids. Chemical Parameters- Acidity, alkalinity, hardness, chlorides, fluorides, dissolved oxygen, Heavy metals and metalloids. Concept of DO, BOD, COD and measurements. Chemical Properties of soil ; Chemical composition of soil. Soil colloids, properties of soil colloids, ion exchange of soil- factors affecting cation and anion exchange capacity of soil. Soil solution, soil reaction pH, factors affecting soil reaction pH. Formation of acid soils, characteristics of acidic soils harmful for plant growth. Control measure of soil acidity. Characteristics and formation of saline and alkaline soil, effect of soil salinity & alkalinity on plant growth. Control measures of soil salinity. 	
Unit-4	15
Advanced instrumentation: Various ranges of electromagnetic radiation, Interaction of electromagnetic radiation with matter, Introduction to UV and X-ray spectroscopy and its applications in Environmental Science, Nephelometry, Atomic Absorption Spectroscopy and Atomic emission spectroscopy and Flame emission spectroscopy-Principle, instrumentation and applications in Environmental sample analysis, Concept of Solvent extraction, Thin Layer Chromatography and Ion Exchange Chromatography, Basic concept to HPLC and Gas Chromatography.	

References

AjayKumarBhagiandChatwal,G.R.TextbookofEnvironmentalChemistry.Bhatia,S.

C.2011.EnvironmentalChemistry, CBS Publishers.

Day,A.K.1984.EnvironmentalChemistry,WilleyEastern,IIIEd.Faust,S.

D.andDly, O.M. 1983. Chemistry of water treatment.

Manahan, S.E. 2000. Environmental Chemistry, 7thEd., Lewis Publications, Florida, U.S.A.

Sharma, B.K. and Kaur. 1995. Environmental Chemistry, Goel Publishing House, Meerut.

Sawyer,C.N.,McMarty,P.L.andPerkinG.F.1994.ChemistryforEnvironmentalEngineering,II Ed.,McGraw Hill.

Tyagi,O.D.andMehra,M.1990.EnvironmentalChemistry,AnmolPublications

Content of Practical Course 5: List of Experiments to be conducted

DSCENVC12-P-SOIL ANALYSIS, NOIS EMEASUREMENT AND SOLIDWASTEANALYSIS (Total Teaching Hours=60;TotalCredits=2)

13 experiments can be chosen from the list below and incorporated into thesyllabusdeliveredindifferentInstitutionsbasedontheavailabilityofresources

- 1. Sampling techniques of Soil
- 2. Determination of Soil Moisture and Texture
- 3. Determination of Specific Gravity of Soil
- 4. Determination of Particle Density of Soil
- 5. Determination of Water Holding Capacity of Soil
- 6. Characterization of Solid Wastes
- 7. Determination of pH and Electrical Conductivity in Soil/Refuse matter
- 8. Determination of Calcium and Magnesium in Soil/Refuse matter
- 9. Determination of Lime Content in Soil/Refuse matter
- 10. Determination of Organic Carbon in Soil/Refuse matter
- 11. Determination of available Nitrogen in Soil/Refuse matter
- 12. Determination of available Phosphorus in Soil/Refuse matter

- 13. Determination of available Potassium in Soil/Refuse matter
- 14. Determination of C/N ratio in Soil/Refuse matter

References

- Baruah, T. C. and Barthakur, H. P. 1997. *Textbook of Soil Analysis*. Vikas PublishingHousePvt.Ltd.
- Daji, J.A. 1988. Textbook of Soil Science. Media Promoters and
- Publishers.Firman,E.B.1964. ChemistryofSoils.OxfordIBHPublishingCo.
- Jackson, M.L. 1973. *Soil–ChemicalAnalysis*. PrenticeHallPublications.
- Miller, R. W. and Donahue, R. L. 1992. *Soils Introduction to Soils and PlantGrowth*. Prentice Hallof India.
- Rowell, T. L. 1994. *Soil Sciences Methods and Applications*. Longman ScientificandTechnical.

SEC4: Environmental Employability 4 Credits

SEMESTER – V

Title of the course SEC-4: Integrated Solid Waste Management

CREDITS – 02

Course objectives: This course will enable students to

- Gain insight into the collection, transfer, and transport of municipal solid waste.
- Understand the design and operation of a municipal solid waste landfill.
- Understand the design and operation of a resource recovery facility.
- Understand the design and operation of a waste-to-energy facility.

Unit -1 Introduction: Day-day solid waste management and social issues, scope and importance of solid waste management, classification and magnitude of the problem, functional elements. Solid Waste: Sources of generation, classifications, characterization and quantification, municipal industrial and bio-medical waste, estimation of moisture content and density of a solid waste.**10 Hours**

Unit -2 Transfer and Transport: Collection services and collections systems, collection equipment, transfer stations, collection route optimization. Processing Techniques: Processing methodologies and waste minimization, recovery, recycle and reuse (3R) of materials from solid waste, volume and size reduction, biological processing. **10 Hours**

Unit-3 Treatment Methodologies : Composting- aerobic and aerobic process, incineration, pyrolysis and energy recovery. Ultimate Disposal: Significance of refuse disposal and management, impact of open land dumping site selection, sanitary land, filing, design criteria and design examples. Leachate and gas collection system leachate treatment.

Hazardous waste: Identification of Hazardous waste, classification, treatment and disposal techniques – biomedical, radioactive and chemical industries **10 Hours**

Course outcomes: During this course, students will be trained :

• Apply the basic scientific and sustainability principles behind waste management, for solving practical waste management challenges.

• Adopt the role on policy driver's play in stakeholders' response to the waste and resource management challenge within a circular economy.

• Know the principles of existing and emerging technologies for the treatment of waste and recovery of value from wastes. Question paper pattern:

Reference:

- 1. Tchobanoglous G., Theissen H., and Eliassen R.(1991), "Solid Waste Engineering Principles and Management Issues", McGraw Hill, New York.
- Peavy, Rowe and Tchobanoglous (1985), "Environmental Engineering", McGraw Hill Co. 4th Edition • CPHEEO, Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organisation, Government of India, New Delhi, 2000. Reference Books:
- 3. Waste Treatment and Disposal 2nd edition Paul T Williams, Wiley, 2005
- 4. Integrated Solid Waste Management Engineering Principles and Management Issues, Tchobanoglous/Theisen/Vigil, McGraw Hill (1993)
- 5. Mantell C.L., (1975), "Solid Waste Management", John Wiley.

Laboratory: (CREDITS - 02)

- 1. Study and sampling techniques of Industrial solid waste
- 2. Determination of Solids in wastewater: Total Solids, Suspended Solidsinlechate
- 3. determationDissolved Solids, Volatile Solids, Fixed Solids, Settleable Solids in leachate samples
- 4. Identification bacteria in aerobic and anaerobic digestion.
- 5. Determination of pH of the solid waste.
- 6. Study of land filling methods.
- 7. Study of composting, incineration methods

B.Sc.Semester6

Title of the Course: DSCENVC14-T-ENVIRONMENTALMICROBIOLOGY and Biotechnology

Number of	Number of lecture	Number of	Number of
Theory Credits	hours/semester	practical Credits	practical hours/semester
4	60	2	60

Programme Specific Objectives			
PSO1	To develop competency in understanding the microbes of Environment.		
PSO2	To instill a knowledge about roles of microbes in the Environment.		
PSO3	Tomotivateandinspiretoacquirecontemporaryunderstandingandusingth e knowledge for remediation.		
PSO4	To inculcate creativity and innovative spirit in identifying appropriate measures for recycling and conservation.		

ProgrammeOutcomes			
P01	Demonstrate competence in understanding the microbes of Environment.		
P02	Demonstrate competence in understanding the microbes in water and their impact on human health.		
PO3	Ability to understand and appreciate the role of microbes in enhancing the quality of life of human.		
PO4	Demonstrate the ability to carryout data collection procedures and analysis in field conditions/laboratories and make appropriate Interpretations using the microbes.		

Content of Theory Course	
Unit-1	15
Environmental Microbiology: Definition, scope and significance. History of microbiology. Structure, Characters and Classification of Microorganisms – Bacteria, Archaea, Protozoa, Algae, Fungi, Viruses and Parasites.	
Microbial Environment: The physical and Chemical environmental parameters of Microorganisms : Physical factors(Temperature, Visible radiation & Ultraviolet radiation) Chemical factors (Water activity, pH, Inorganic nutrients, gases and organic nutrients). Microbial habitats: Terrestrial Environment: soil microflora, symbiotic and non-symbiotic nitrogen fixation, mycorrhiza-Ectomorphic, Endomorphic and its significance	

Unit-2	15
Aquatic Microbiology: Definition. Water related diseases-Bradley's classification - <i>water-borne diseases, water-washed diseases, water-based diseases and water-related diseases</i> . Infection, pathogens, symptoms. Treatment and preventive measures – Disinfection of water for potablepurposes.Coliforms– <i>Citrobacter,Enterobacter,Escherichia</i> and <i>Klebsiella</i> .TotalandFaecal coliforms.water borne (Poliomyelitis, Viral hepatitis, Cholera, and amoebic dysentery) and COVID-19	
Air Microbiology: Definition. Airborne infections – Causative microbes – Control measures; Droplet infection; Sick Building Syndrome. as specific pathogens with examples of air borne (Swine flu, Influenza, tuberculosis)	
Unit-3	15
 Soil Microbiology: Definition. Rhizosphere and Rhizoplane Microflora – Biodegradation of DDT, PCBs and Plastics; Bioleaching of Heavy Metals – Copper, Iron and Uranium; Role of microbes in Biogeochemical Cycles: Nitrogen and Phosphorus. Gaseous fuel: introduction, Biogas and Hydrogen – Biogas production. anaerobic digestion - solubilisation, acidogenesis and methanogenesis - methanogens. Mechanism of methane production, advantage and disadvantage. Hydrogen production – photo biological process, hydrogenese and hydrogen production. Bio-fuels: introduction, production of bio-ethanol, ethanol recovery. Advantages of ethanol over petrol, disadvantages of ethanol, Biodiesel: lipids as a source of biodiesel, biodiesel from hydrocarbon. Biodiesel production from jetropa. 	
Unit-4	15
 Biotechnology and application of microbes in Environment: Bio fertilizers and biopesticide: Introduction, scope and importance of biotechnology. Biofertilizer- <i>Rhizobium, azotobactor, azospirilium,</i> Blue green algae, <i>azolla, mycorrhizae</i>. Phosphate solubilizing microorganisms, large scale production, vermicomposting, advantage and disadvantages. Bio-control agents-Bio insecticide, bio herbicide, disease control, advantage and disadvantages Restoration of Degraded Lands: Reforestation through micro propagation; casuarinas for tropical reforestation on adverse sites; development of stress tolerant plants; use of mycorrhizae in reforestation: use of microbes for improving soil fortility. 	

heavy metals.

Role of microbes inorganic solid waste management: Compostinganaerobic and aerobic (Windrows method, accelerated composting, Biomechanical composting machines). Role of inoculum in composting. Vermi composting.

References

- Atlas,R.M.andBartha,R.1998.MicrobialEcology-
 - FundamentalsandApplications.Benjamin/CummingsSciencePublishing.
- Bitton, G. 1994. Wastewater Microbiology. Wiley-Liss Inc.McGraw HillInternationalEditions.
- Hurst,C.J.(Ed.).(2017).Modelingthetransmissionandpreventionofinfectiousdisease.Sprin ger InternationalPublishing.
- Hurst,C.J.(Ed.).(2019).Thestructureandfunctionofaquaticmicrobialcommunities(Vol.7).S pringer.
- Hurst,C.J.(Ed.).(2019). UnderstandingTerrestrialMicrobialCommunities. SpringerInternationalPublishing.
- Mitchel, R. (Ed.) 1992. Environmental Microbiology. Wiley-LissInc.
- Pelczar, M.J., Chan, E.C.S. and Krieg, N.R. 1993. Microbiology– Concepts and Applications. McGraw-Hill Book Co.
- Sharma, P.D. (2016). Microbiology. RastogiPublications, Meerut.
- Southey, C., Kaushik, N. and Trivedi, R.K. (Eds). 2001. Detergents and the Environment. Tata McGraw-Hill Publishing Co. Ltd.
- Waites, M.J., Morgan, N.L., Rockey, J.S., & Higton, G. (2009). Industrial microbiology: an introduc tion. John Wiley & Sons.

Prescott L.M. Harley, J.P and Klein, D.A 1999. Microbiology. IV edn, WBC/ McGraw Hill companies USA.

Cassida – Industrial Microbiology

Atlas- Environmental Microbiology

R C Dubay- A Text book of Biotechnology

P K Gupta - Elements of Biotechnology by

Vinita Kale and Kishore Bhusari - Applied Microbiology

7Pelzer J.M Chan, E.C.S. and Kreig, N.R. 1993. Microbiology. V edn, Tata McGraw Hill Publishing Co. Ltd. New Delhi.

SubbaRao, N.S.1986. Soil Microorganisms and plant growth. III edn, Oxford and IBH Publishing Co., New Delhi.

Power and Daginawala 1996. General Microbiology Vol I&II, Himalaya Publishing House, Bombay.

Industrial Microbiology by Prescott and Dunn Industrial Microbiology- by Cassida Agriculture Biotechnology by Purohith Environmental Microbiology by Atlas Biotechnology by B D Singh A text book of Biotechonology by R C Dubay Elements of Biotechonology by P K Gupta Applied Microbiology by VinitaKale and Kishore Bhusari Food Microbiology by M R Adams and Moss

Content of Practical Course 6: List of Experiments to be conducted DSC ENVC15-P-ENVIRONMENTAL MICROBIOLOGY

(Total Teaching Hours=60;TotalCredits=2)

- 1. Best practices for microbiology laboratories
- 2. Microscopy–Study of Simple and Compound microscopes
- 3. Sterilization techniques and preparation of culturemedia–Broth and Solid media
- 4. Isolation of Bacteria from Water/Wastewater-Serial dilution technique
- 5. Identification of Bacteria–Colony characteristics
- 6. Identification of Bacteria by gram staining technique
- 7. Isolation of Fungi from Soils–Pour plate method
- 8. Identification of Fungi –Lacto phenol cotton blue staining
- 9. Study of Root Nodule Bacteria–Gram staining
- 10. Study of Endomycorrhiza(VAM)
- 11. Estimation of Coliform Group of Bacteria–MPN Technique
- 12. Estimation of Coliform Group of Bacteria–MF Technique
- 13. Estimation of Faecal Coliform in water
- 14. Construction of bacterial growth curves–pH–Broth culture
- 15. Minimum Inhibitory Concentrations(MICs) of heavy metals on bacteria

References

Aneja,K.R.1996.ExperimentsinMicrobiology,PlantPathology,TissueCultureandMushroo mCultivation.WishwaPrakashan.

Benson,H.J.1998.MicrobiologicalApplications-

Laboratory Manual in General Microbiology. McGraw-Hill Publications.

Bhattacharyya, B.N. 1993. Experiments with Microorganisms. Emkay Publications. Standard Microorganisms. Standard Microo

MethodforExaminationofWaterandWastewater.2017.APHA-WEF.

B.Sc.Semester6

Title of the Course: DSC ENVC16-T-ENVIRONMENTAL IMPACT ASSESSMENT AND ENVIRONMENTAL RISK ASSESSMENT

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of practical hours/semester
4	60	2	60

Programme Specific Objectives			
PSO1	To develop competency in understanding the process of assessing the EnvironmentalImpact.		
PSO2	To instill a knowledge on methodologies used for assessing Environmental Impact.		
PSO3	Tomotivateandinspiretoacquirecontemporaryunderstandingandskillsle adingtoissueidentificationandconservation.		
PSO4	Toinculcatecreativityandinnovativespiritinidentifyingappropriateassess menttools.		

ProgrammeOutcomes			
P01	DemonstratecompetenceinunderstandingthereportsofEnvironmentalImp actassessment of a project.		
P02	Demonstrate the ability to carry out data collection procedures and analysis in field conditions/laboratories and make appropriate interpretations required for EIA.		
P03	Abilitytounderstandtheproceduretoconductanaudit.		
P04	Demonstrate the ability to carry out risk analys is adhering to the laws.		

Content of Theory Course	
Unit-1	15
Environmental Impact Assessment (EIA): Definition, principle, process and importance of an EIA. Salient features of EIA. Utilities of EIA. EIANotification,2006 and subsequent amendments.	
Components of EIA – Air, Water, Noise, Land, Biological environment, Socio- economic and Health Environment. Participants of an EIA.	

Steps in an EIA–Screening, Scoping & consideration of alternatives, Baseline data collection, Impact prediction, Assessment of alternatives, Delineation of mitigation measures, preparation of environmental	
Decision making and Monitoring the clearance conditions.	
Unit-2	15
EIA Methodologies: Rapid and Comprehensive EIA. Characteristics of methods of Impact Identification. Criteria for the selection of EIA methodology–General, impact identification, impact measurement, impact interpretation and evaluation and impact communication. Methods of Impact Identification - Adhoc methods, Checklist methods, Matrices methods, Networks methods and Overlay methods. Environmental index using factor analysis, Cost-benefit analysis, Predictive or Simulation methods. Case Studies: Industry Housing and Multi purpose Dams	
Unit-3	15
Environmental Audit: Concept, Aims and Objectives; Elements of Environmental audit- Internal and External audit. Types of Environmental Audit: Environmental Compliance Audits, Environmental Management Audits and Functional Environmental Audits. Water audit, Energy audit, Health & Safety audit and Waste & Waste Minimisation audit. Audit procedure: Pre-audit activities, On-site activities and Post-audit activities. Evaluation of Audit data and Preparation of audit report.	
Unit-4	15
Environmental Risk Assessment	
Hazard identification and risk assessment-Quantitative and Qualitative risk assessment.	
Quantitative-Hazard Identification and Risk Analysis(HIRA).	

Qualitative-Hazard and Operability Analysis(HAZOP),Job Safety Analysis(JSA),Fault Tree Analysis(FTA) and Event Tree Analysis(ETA).

Disaster management plan-Off-site emergency plan and On-site emergency plan

Occupation, Health and Safety Management Plan, PPEs, Fire Safety,

Chemical and Biological Hazards. Safety Management and Laws-Factories Act; Manufacture, Storage and Import Hazardous Chemical Rules.

References

- Anjaneyalu,Y.andValliManickam.2014.EnvironmentalImpactAssessmentMethodologies. BS Publications,Hyderabad.
- Baldwin, J.H. 1988. Environmental Planning and Management. International Book Distributors.

Barthwal, R.R.2009. Environmental Impact Assessment.New Age International publication.

Canter, L.W.1996. Environmental ImpactAssessment. McGraw Hill Inc.

Rao, P. S. B. and Rao, P. M. (Eds). 2001. Environment Management and Audit. DeepandDeepPublicationsPvt.Ltd.

Rau, J.G. and Wooten, D.C. 1980. Environmental ImpactAnalysis Handbook. McGrawHill.

Santra, S. C. 2001. Environmental Science, New Central Book Agency (P)

Ltd.Shrivastava,A.K.2003.EnvironmentImpactAssessment.APHPublishing Corporation.

Trivedi, P.R.2004. Environmental ImpactAssessment. APHPublishing Corporation.

Content of Practical Course6: List of Experiments to be conducted DSCENVC17-P-METHODS OFENVIRONMENTAL IMPACTASSESSMENT AND ENVIRONMENTAL AUDIT

(Total Teaching Hours=60;TotalCredits=2)

- 1. Study of recent EIA notification and guidelines
- 2. Baseline data collection and analysis
- 3. Study of impact identification methods -Checklists
- 4. Study of impact identification methods-Matrices
- 5. Study of impact identification methods-Networks
- 6. Study of cost-benefit analysis of development project
- 7. Study of socio-economic impacts-Questionnaire method
- 8. Study of health impacts-Questionnaire method
- 9. Study of Environmental Risk Assessment–Data sheet method
- 10. Study of Environmental audit methods-Water audit
- 11. Study of Environmental audit methods –Waste water audit
- 12. Study of Environmental audit methods-Energy audit–Electricity
- 13. Study of Environmental audit methods Energy audit fossil fuels
- 14. Study of Environmental audit methods–Solid Waste audit

References

Arts, J., & Morrison-

Saunders, A. (Eds.). (2012). *Assessing impact: handbook of EIA and SEA follow-up*. Routledge.

- Barton, H., & Bruder, N. (2014). *Aguidetolocalenvironmentalauditing*. Routledge.
- Carroll,B.,&Turpin,T.(2002).*Environmentalimpactassessmenthandbook:Apracticalg uideforplanners,developersandcommunities*.ThomasTelford.
- Erickson, P.A. (1994). Apractical guide to environmental impact assessment. Academic Press Inc..
- Munier, N. (2004). *Multicriteriaenvironmentalassessment: apracticalguide*. SpringerScience&BusinessMedia.
- Nelson, D. D. (1998). International environmental auditing. Government

Institutes.Rathi,A.K.A.(2021). Handbook of

EnvironmentalImpactAssessment:Conceptsand

INTERNSHIP -2 CREDITS

Subject Expert Committee Members actively participated in the preparation of proposed curriculum for four years B.Sc. (Basic/Hons.) degree in Environmental Science.

SeveralmeetingswereconductedvirtuallyandphysicallywithEnvironmental Science subject committee experts; and the proposed curriculumwas approved by the Chairpersons - Board of Studies and Board of Examiners ofvarious Universities and Colleges of Karnataka State.

SUBJECTEXPERTCOMMITTEE-ENVIRONMENTALSCIENCE				
Name	Designation and address	Position	Signature	
	Members Present			
Dr. N. Nandini	Professor, Department of Environmental Science, Bangalore University, Bengaluru	Chairperson	Nam duin . N.	
Dr. N. S. Raju	Professor, Department of Studies in Environmental Science, University of Mysore, Mysuru	Member	d>	
Dr. S. Suresha	Associate Professor, Department of Environmental Science, Yuvaraja's College (Autonomous),University of Mysore,Mysuru	Member	h-f	
Dr. B. S. Prabhakar	Associate Professor, Department of Environmental Science, St.Joseph's University, Bengaluru	Member	Aprabrahas	
Dr. K. L. Prakash	Professor, Department of Environmental Science, Bangalore University, Bengaluru	Member	Jacky	
Smt. Akshatha Chandra,G.R.,	Special Officer, Karnataka State Higher Education Council, Government of Karnataka	Member Convenor	Altrostaltande	