VishwavidyanilayaKaryasoudha Crawford Hall, Mysuru- 570005

Dated: 26-10-2021

Notification

Sub:- Syllabus and Examination Pattern of Bachelor of Computer Applications (BCA) with effective from the Academic year 2021-22 as per NEP-2020.

Ref:- 1. Decision of Board of Studies in Computer Science (UG) meeting held on 29-09-2021 \& 30-09-2021.
2. Decision of the Faculty of Science \& Technology Meeting held on 16-10-2021.
3. Decision of the Academic Council meeting held on 22-10-2021.

The Board of studies in Computer Science (UG) which met on 29-09-2021 \& 30-09-2021 has recommended \& approved the syllabus and pattern of Examination of Bachelor of Computer Applications (BCA) with effective from the Academic year 2021-22 as per NEP -2020.

The Faculty of Science \& Technology and Academic Council at their meetings held on 16-10-2021 and 22-10-2021 respectively have also approved the above said proposal and it is hereby notified.

The syllabus and Examination pattern is annexed herewith and the contents may be downloaded from the University Website i.e., www.uni-mysore.ac.in. σ_{0}

To:-

1. All the Principal of affiliated Colleges of University of Mysore, Mysore. Those who are running B.Sc Courses.
2. The Registrar (Evaluation), University of Mysore, Mysuru.
3. The Chairman, BOS/DOS, in Computer Sciences, Manasagangothri, Mysore.
4. The Dean, Faculty of Science \& Technology, DoS in Psychology, MGM.
5. The Director, Distance Education Programme, Moulya Bhavan, Manasagangotri, Mysuru.
6. The Director, PMEB, Manasagangothri, Mysore.
7. Director, College Development Council, Manasagangothri, Mysore.
8. The Deputy Registrar/Assistant Registrar/Superintendent, Administrative Branch and Examination Branch, University of Mysore, Mysuru.
9. The PA to Vice-Chancellor/ Reoistrar/ Reoictrar (Fvaluation) Itnivarcity if

Annexure: BCA Syllabus

Syllabus for BCA (Basic and Honors) $1^{\text {st }}$ and 2 ${ }^{\text {nd }}$ Semesters

Semester: I

Course Code: CAC01	Course Title: Fundamentals of Computers
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02

Course Outcomes (COs):

- Introduction to computers, classification of computers, anatomy of computer, constituents and architecture, microcontrollers
- Operating systems, functions of operating systems, classification of operating systems, kernel, shell, basics of Unix, shell programming, booting
- Databases, why databases are used, users, SQL, data types in SQL, introduction of queries - select, alter, update, delete, truncate, using where, and or in not in
- Internet basics, features, applications, services, internet service providers, domain name system, browsing, email, searching
- Web Programming basics, introduction of HTML and CSS programming
- Introduction of computers, classification of computers, anatomy of computer, constituents and architecture, microcontrollers.

Course Content

Content	Hours
Unit-1	
Fundamentals of Computers: Introduction to Computers - Computer Definition, Characteristics of Computers, Evolution and History of Computers, Types of Computers, Basic Organisation of a Digital Computer; Number Systems - different	
types, conversion from one number system to another; Computer Codes - BCD,	
Gray Code, ASCII and Unicode; Boolean Algebra - Boolean Operators with Truth	
Tables; Types of Software - System Software and Utility Software; Computer	
Languages - Machine Level, Assembly Level \& High Level Languages, Translator	
Programs - Assembler, Interpreter and Compiler; Planning a Computer Program -	
Algorithm, Flowchart and Pseudo code with Examples.	
Characteristics of computers, Classification of Digital Computer Systems:	
Microcomputers, Minicomputers, Mainframes, Super computers.	

Unit-2

Anatomy of Computer: Introduction, Functions \& Components of a Computer,
Central Processing Unit, Microprocessor, Storage units, Input and output Devices. How CPU and memory works. Program execution with illustrative examples. Introduction to microcontrollers.

Operating System Fundamentals: Operating Systems: Introduction, Functions of an operating System, Classification of Operating Systems, System programs, Application programs, Utilities, The Unix Operating System, Basic Unix commands, Microkernel Based Operating System, Booting.
Unit-3

Introduction to Database Management Systems: Database, DBMS, Why
Database -File system vs DBMS, Database applications, Database users, Introduction to SQL, Data types, Classification of SQL-DDL with constraints, DML, DCL, TCL

Internet Basics: Introduction, Features of Internet, Internet application, Services of Internet, Logical and physical addresses, Internet Service Providers, Domain Name System.

Web Basics: Introduction to web, web browsers, http/https, URL, HTML5, CSS

Text Books:

1. Pradeep K. Sinha and Priti Sinha: Computer Fundamentals (Sixth Edition), BPB Publication
2. David Riley and Kenny Hunt, Computational thinking for modern solver, Chapman \& Hall/CRC,

Reference:

1. J. Glenn Brook shear," Computer Science: An Overview", Addision-Wesley, Twelfth Edition,
2. R.G. Dromey, "How to solve it by Computer", PHI,

Course Code: CAC01P	Course Title: Information Technology Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 25
Exam Marks: 25	Exam Duration: 03

Part A: Hardware

1. Identification of the peripherals of a computer, components in a CPU and their functions.
2. Assembling and disassembling the system hardware components of personal computer.
3. Basic Computer Hardware Trouble shooting.
4. LAN and WiFi Basics.
5. Operating System Installation - Windows OS, UNIX/LINUX, Dual Booting.
6. Installation and Uninstallation of Software - Office Tools, Utility Software (like Anti-Virus, System Maintenance tools); Application Software - Like Photo/Image Editors, Audio Recorders/Editors, Video Editors ...); Freeware, Shareware, Payware and Trial ware; Internet Browsers, Programming IDEs,
7. System Configuration - BIOS Settings, Registry Editor, MS Config, Task Manager, System Maintenance, Third-party System Maintenance Tools (Similar to CCleaner and Jv16 PowerTools ...)

Part B: Software

1. Activities using Word Processor Software
2. Activities using Spreadsheets Software
3. Activities using Presentation Software
4. Activities involving Multimedia Editing (Images, Video, Audio ...)
5. Tasks involving Internet Browsing
6. Flow charts: Installation and using of flowgarithms software for different arithmetic tasks like sum, average, product, difference, quotient and remainder of given numbers, calculate area of Shapes (Square, Rectangle, Circle and Triangle), arrays and recursion.

NOTE: In addition to the ones listed above, universities can include other activities so as for the student to become proficient in using personal computers for multiple purposes for which modern computers can be put to use.

Reference:

1. Computational Thinking for the Modern Problem Solver, By Riley DD, Hunt K.A CRC press, 2014
2. Ferragina P, Luccio F. Computational Thinking: First Algorithms, Then Code. Springer

Web References:

http://www.flowgorithm.org/documentation/

Evaluation Scheme for Lab Examination

Assessment Criteria	Marks	
Activity - 1 from Part A	Write up on the activity/ task	5
	Demonstration of the activity/ task	5
Activity-2 from Part B	Write up on the activity/ task	5
	Demonstration of the activity/ task	5
Viva Voce based on Lab Activities	2	
Practical Records	3	
Total	$\mathbf{2 5}$	

Course Code: CAC02	Course Title: Programming in C
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Confidently operate Desktop Computers to carry out computational tasks
- Understand working of Hardware and Software and the importance of operating systems
- Understand programming languages, number systems, peripheral devices, networking, multimedia and internet concepts
- Read, understand and trace the execution of programs written in C language
- Write the C code for a given problem
- Perform input and output operations using programs in C
- Write programs that perform operations on arrays

Course Content

Content	Hours
Unit - 1	Introduction to C Programming: Overview of C; History and Features of C;
Structure of a C Program with Examples; Creating and Executing a C Program;	
Compilation process in C.	
C Programming Basic Concepts: C Character Set; C tokens - keywords,	
identifiers, constants, and variables; Data types; Declaration \& initialization of	14
variables; Symbolic constants.	
Input and output with C: Formatted I/O functions - printf and scanf, control	
stings and escape sequences, output specifications with printf functions;	
Unformatted I/O functions to read and display single character and a string -	
getchar, putchar, gets and puts functions.	
C Operators \& Expressions: Arithmetic operators; Relational operators;	
Logical operators; Assignment operators; Increment \& Decrement operators;	
Bitwise operators; Conditional operator; Special operators; Operator Precedence and Associatively; Evaluation of arithmetic expressions; Type conversion.	

Unit - 2

Control Structures: Decision making Statements - Simple if, if_else, nested if_else, else_if ladder, Switch Case, goto, break \& continue statements; Looping Statements - Entry controlled and exit controlled statements, while, do-while, for loops, Nested loops.

Arrays: One Dimensional arrays - Declaration, Initialization and Memory representation; Two Dimensional arrays - Declaration, Initialization and Memory representation.

Strings: Declaring \& Initializing string variables; String handling functions strlen, strcmp, strcpy and strcat; Character handling functions - toascii, toupper, tolower, isalpha, isnumeric etc.
Unit - 3
Pointers in C: Understanding pointers - Declaring and initializing pointers, accessing address and value of variables using pointers; Pointers and Arrays; Pointer Arithmetic; Advantages and disadvantages of using pointers;

User Defined Functions: Need for user defined functions; Format of C user defined functions; Components of user defined functions - return type, name, parameter list, function body, return statement and function call; Categories of user defined functions - With and without parameters and return type.

User defined data types: Structures - Structure Definition, Advantages of Structure, declaring structure variables, accessing structure members, Structure members initialization, comparing structure variables, Array of Structures; Unions - Union definition; difference between Structures and Unions.

Text Books:

1. C: The Complete Reference, By Herbert Schildt.
2. M.T Somashekara, D.S Guru and K.S. Manjunatha: Problem solving with C, PHI publication
3. C Programming Language, By Brain W. Kernighan
4. Kernighan \& Ritchie: The C Programming Language (PHI)

Reference Books:

1. P. K. Sinha \& Priti Sinha: Computer Fundamentals (BPB)
2. E. Balaguruswamy: Programming in ANSI C (TMH)
3. Kamthane: Programming with ANSI and TURBO C (Pearson Education)
4. V. Rajaraman: Programming in C (PHI - EEE)
5. S. Byron Gottfried: Programming with C (TMH)
6. Yashwant Kanitkar: Let us C
7. P.B. Kottur: Programming in C (Sapna Book House)

Course Code: CAC02P	Course Title: C Programming Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks:25
Exam Marks: 25	Exam Duration: 03

Programming Lab

Part A:

1. Program to read radius of a circle and to find area and circumference
2. Program to read three numbers and find the biggest of three
3. Program to demonstrate library functions in math.h
4. Program to check for prime
5. Program to generate n primes
6. Program to read a number, find the sum of the digits, reverse the number and check it for palindrome
7. Program to read numbers from keyboard continuously till the user presses 999 and to find the sum of only positive numbers
8. Program to read percentage of marks and to display appropriate message (Demonstration of else-if ladder)
9. Program to find the roots of quadratic equation (demonstration of switch Case statement)
10. Program to read marks scored by n students and find the average of marks (Demonstration of single dimensional array)
11. Program to remove Duplicate Element in a single dimensional Array
12. Program to perform addition and subtraction of Matrices

Part B:

1. Program to find the length of a string without using built in function
2. Program to demonstrate string functions.
3. Program to demonstrate pointers in C
4. Program to check a number for prime by defining isprime() function
5. Program to read, display and to find the trace of a square matrix
6. Program to read, display and add two $\mathrm{m} \times \mathrm{n}$ matrices using functions
7. Program to read, display and multiply two $\mathrm{m} \times \mathrm{n}$ matrices using functions
8. Program to read a string and to find the number of alphabets, digits, vowels, consonants, spaces and special characters.
9. Program to Reverse a String using Pointer
10. Program to Swap Two Numbers using Pointers
11. Program to demonstrate student structure to read \& display records of n students.
12. Program to demonstrate the difference between structure \& union.

Note: Student has to execute a minimum of 10 programs in each part to complete the Lab course

Evaluation Scheme for Lab Examination

Assessment Criteria	Marks	
Program - 1 from Part B	Flowchart / Algorithm	02
	Writing the Program	04
	Execution and Formatting	04
Program -2 from Part B	Flowchart/Algorithm	02
	Writing the Program	04
	Execution and Formatting	04
Viva Voce based on C Programming	02	
Practical Record	03	
Total		

Course Code: CAC03(a)	Course Title: Mathematical Foundation
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02

Course Outcomes (COs):

- Study and solve problems related to connectives, predicates and quantifiers under different situations.
- Develop basic knowledge of matrices and to solve equations using Cramer's rule.
- Know the concept of Eigen values.
- To develop the knowledge about derivatives and know various applications of differentiation.
- Understand the basic concepts of Mathematical reasoning, set and functions

Content	Hours
Unit - 1	
Basic concepts of set theory: Mathematical logic introduction-statements Connectives-negation, conjunction, disjunction- statement formulas and truth tables- conditional and bi Conditional statements- tautology contradiction- equivalence of formulas-duality law-Predicates and Quantifiers, Arguments.	14
Unit - 2	14
Operations on sets: power set- Venn diagram Cartesian product-relations - functions- types of functions - composition of functions. Matrix algebra: Introduction-Types of matrices-matrix operations- transpose of a matrix -determinant of matrix - inverse of a matrix- Cramer's rule	
Unit - 3	14
Matrix: finding rank of a matrix - normal form-echelon form cayley Hamilton theorem-Eigen values Differential calculus: Functions and limits - Simple Differentiation of Algebraic Functions - Evaluation of First and Second Order Derivatives - Maxima and Minima	

Text Books:

P. R. Vittal-Business Mathematics and Statistics, Margham Publications, Chennai, Reference Books:
B. S. Vatsa-Discrete Mathematics -New Age International Limited Publishers, New Delhi

Course Code: CAC03(b)	Course Title: Accountancy
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02

Course Outcomes (COs):

- Study and understand Accounting, systems of Book, Branches of accounting advantage and limitations
- Know the concept of accounting, financial accounting process and Journalization
- Maintenance different account book and reconciliations
- Preparations of different bills, and trial balance.
- Understand the basic concepts of Mathematical reasoning, set and functions

Content	Hours
Unit - 1	
Introduction: History and Development of Accounting, Meaning, Objectives and functions of Accounting, Book keeping V/s Accounting, Users of accounting data, systems of book keeping and accounting, branches of accounting, advantages and limitations of accounting Accounting Concepts and Convention: Meaning, need and classification, accounting standards meaning, need and classification of Indian accounting standards. Accounting principles V/s accounting standard	
Unit - 2	
Financial Accounting Process: Classification of accounting transactions and accounts, rules of debit and credit as per Double Entry System. Journalization and Ledger posting.	14
Preparation of Different Subsidiary Books: Purchase Day book Sales Day	
Book, Purchase Returns Day Book, Sales Returns Day Book, Cash Book.	
Bank Reconciliation Statement: Meaning, Causes of Difference, Advantages,	
Preparation of Bank Reconciliation Statements.	

Text Books:

1. S. Ramesh, B.S. Chandrashekar, A Text Book of Accountancy.
2. V.A. Patil and J.S. Korihalli, Book - keeping and accounting, (R. Chand and Co. Delhi).
3. R. S. Singhal, Principles of Accountancy, (Nageen Prakash pvt. Lit. Meerut).
4. M. B. Kadkol, Book - Keeping and Accountancy, (Renuka Prakashan, Hubil)
5. Vithal, Sharma:Accounting for Management, Macmillan Publishers, Mumbai.

Reference Books:

1. B.S. Raman, Accountancy, (United Publishers, Mangalore).
2. Tulsian, Accouning and Finacial Management - I: Financial Accounting - Person Education.

Semester: II

Course Code: CAC04	Course Title: Data Structures using C
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithms
- Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs
- Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs
- Demonstrate different methods for traversing trees
- Compare alternative implementations of data structures with respect to performance
- Describe the concept of recursion, give examples of its use
- Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

Course Content

Content	Hours
Unit - 1	
 Non-primitive, Linear and Non-linear; Operations on data structures. Dynamic memory allocation: Static \& Dynamic memory allocation; Memory allocation and de-allocation functions - malloc, calloc, realloc and free.	
Algorithm Specification, Performance Analysis, Performance Measurement	
Recursion: Definition; Types of recursions; Recursion Technique Examples - GCD, Binomial coefficient nCr, Towers of Hanoi; Comparison between iterative and recursive functions.	
Arrays: Basic Concepts - Definition, Declaration, Initialisation, Operations on arrays; Types of arrays; Arrays as abstract data types (ADT); Representation of	
Linear Arrays in memory.	

Unit - 2

Traversing linear arrays; Inserting and deleting elements; Sorting - Selection sort, Bubble sort, Quick sort, Selection sort, Insertion sort; Searching - Sequential Search, Binary search; Iterative and Recursive searching; Multidimensional arrays; Representation of multidimensional arrays; Sparse matrices.

Stacks: Basic Concepts - Definition and Representation of stacks; Operations on stacks; Applications of stacks; Infix, postfix and prefix notations; Conversion from infix to postfix using stack; Evaluation of postfix expression using stack; Application of stack in function calls.
Queues: Basic Concepts - Definition and Representation of queues; Types of queues - Simple queues, Circular queues, Double ended queues, Priority queues; Operations on Simple queues.

Unit - 3

Linked list: Basic Concepts - Definition and Representation of linked list, Types of Representation of Linked list in Memory
Operations on Singly linked lists - Traversing, Searching, Insertion, Deletion; Memory allocation; Garbage collection

Trees: Definition; Tree terminologies -node, root node, parent node, ancestors of a node, siblings, terminal \& non-terminal nodes, degree of a node, level, edge, path, depth;
Binary tree: Type of binary trees - strict binary tree, complete binary tree, binary search tree and heap tree; Array representation of binary tree. Traversal of binary tree; preorder, inorder and postorder traversal

Text Books

1. Ellis Horowitz and Sartaj Sahni: Fundamentals of Data Structures

References

1. Tanenbaum: Data structures using C (Pearson Education)
2. Kamathane: Introduction to Data structures (Pearson Education)
3. Y. Kanitkar: Data Structures Using C (BPB)
4. Kottur: Data Structure Using C
5. Padma Reddy: Data Structure Using C
6. Sudipa Mukherjee: Data Structures using C - 1000 Problems and Solutions (McGraw Hill Education, 2007))

Course Code: CAC04P	Course Title: Data Structures Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 25
Exam Marks: 25	Exam Duration: 03 Hours

Programming Lab

Part A:

1. Program to find GCD using recursive function
2. Program to display Pascal Triangle using binomial function
3. Program to generate n Fibonacci numbers using recursive function.
4. Program to implement Towers of Hanoi.
5. Program to implement dynamic array, find smallest and largest element of the array.
6. Program to create two files to store even and odd numbers.
7. Program to create a file to store student records.
8. Program to read the names of cities and arrange them alphabetically.
9. Program to sort the given list using selection sort technique.
10. Program to sort the given list using bubble sort technique.

Part B:

1. Program to sort the given list using insertion sort technique.
2. Program to sort the given list using quick sort technique.
3. Program to sort the given list using merge sort technique.
4. Program to search an element using linear search technique.
5. Program to search an element using recursive binary search technique.
6. Program to implement Stack.
7. Program to convert an infix expression to postfix.
8. Program to implement simple queue.
9. Program to implement linear linked list.
10. Program to display traversal of a tree.

Evaluation Scheme for Lab Examination

Assessment Criteria	Marks	
Program - 1 from Part A	Flowchart / Algorithm	02
	Writing the Program	04
	Execution and Formatting	04
Program -2 from Part B	Flowchart/Algorithm	02
	Writing the Program	04
	Execution and Formatting	04
Viva Voce based on C Programming	02	
Practical Record	03	
Total		

Course Code: CAC05	Course Title: Object Oriented Programming with JAVA
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Understand the features of Java and the architecture of JVM
- Write, compile, and execute Java programs that may include basic data types and control flow constructs and how type casting is done
- Identify classes, objects, members of a class and relationships among them needed for a specific problem and demonstrate the concepts of polymorphism andinheritance
- The students will be able to demonstrate programs based on interfaces and threads and explain the benefits of JAVA's Exceptional handling mechanism compared to other Programming Language
- Write, compile, execute Java programs that include GUIs and event driven programming and also programs based on files

Course Content

Content	Hours
Unit-1	
Introduction to Java: Basics of Java programming, Data types, Variables, Operators, Control structures including selection, Looping, Java methods, Overloading, Math class, Arrays in java. Objects and Classes: Basics of objects and classes in java, Constructors,	
Finalizer, Visibility modifiers, Methods and objects, Inbuilt classes like String, Character, String Buffer, File, this reference.	
Unit-2	
Inheritance and Polymorphism: Inheritance in java, Super and sub class, Overriding, Object class, Polymorphism, Dynamic binding, Generic programming, Casting objects, Instance of operator, Abstract class, Interface in java, Package in java, UTIL package.	14
Multithreading in java: Thread life cycle and methods, Runnable interface, Thread synchronization, Exception handling with try catch-finally, Collections in java, Introduction to JavaBeans and Network Programming.	

Unit - 3

Event and GUI programming: Event handling in java, Event types, Mouse and key events, GUI Basics, Panels, Frames, Layout Managers: Flow Layout, Border Layout, Grid Layout, GUI components like Buttons, Check Boxes, Radio Buttons, Labels, Text Fields, Text Areas, Combo Boxes, Lists, Scroll Bars, Sliders, Windows, Menus, Dialog Box, Applet and its life cycle, Introduction to swing, Exceptional handling mechanism.

I/O programming: Text and Binary I/O, Binary I/O classes, Object I/O, Random Access Files.

Text Books

1. Programming with Java, By E Balagurusamy - A Primer, Fourth Edition, Tata McGraw Hill Education Private Limited.
2. Core Java Volume I - Fundamentals, By Cay S. Horstmann, Prentice Hall
3. Object Oriented Programming with Java : Somashekara, M.T., Guru, D.S., Manjunatha, K.S

Reference Books:

1. Java 2 - The Complete Reference - McGraw Hill publication.
2. Java - The Complete Reference, 7th Edition, By Herbert Schildt- McGraw Hill publication.

Course Code: CAC05P	Course Title: JAVA Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 25
Exam Marks: 25	Exam Duration: 03 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- Implement Object Oriented programming concept using basic syntaxes of control Structures
- Identify classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem
- Demonstrates how to achieve reusability using inheritance
- Demonstrate understanding and use of interfaces, packages, different exception handling mechanisms and concept of multithreading for robust faster and efficient application development.
- Identify and describe common user interface components to design GUI in Java using Applet \& AWT along with response to events

Practice Lab

1. Program to print the following triangle of numbers

1
12
123
1234
12345
2. Program to simple java application, to print the message, "Welcome to java"
3. Program to display the month of a year. Months of the year should be held in an array.
4. Program to find the area of rectangle.
5. program to demonstrate a division by zero exception
6. Program to create a user defined exception say Pay Out of Bounds.

Programming Lab

PART A: Java Fundamentals 00Ps in Java

1. Program to assign two integer values to X and Y . Using the 'if' statement the output of the program should display a message whether X is greater than Y .
2. Program to list the factorial of the numbers 1 to 10 . To calculate the factorial value, use while loop. (Hint Fact of $4=4^{*} 3^{*} 2^{*} 1$)
3. Program to add two integers and two float numbers. When no arguments are supplied, give a default value to calculate the sum. Use function overloading.
4. Program to perform mathematical operations. Create a class called AddSub with methods to add and subtract. Create another class called MulDiv that extends from AddSub class to use the member data of the super class. MulDiv should have methods to multiply and divide A main function should access the methods and perform the mathematical operations.
5. Program with class variable that is available for all instances of a class. Use static variable declaration. Observe the changes that occur in the object's member variable values.
6. Program
a. To find the area and circumference of the circle by accepting the radius from the user.
b. To accept a number and find whether the number is Prime or not
7. Program to create a student class with following attributes;

Enrollment No: Name, Mark of sub1, Mark of sub2, mark of sub3, Total Marks. Total of the three marks must be calculated only when the student passes in all three subjects. The pass mark for each subject is 50 . If a candidate fails in any one of the subjects his total mark must be declared as zero. Using this condition write a constructor for this class. Write separate functions for accepting and displaying student details. In the main method create an array of three student objects and display the details.
8. In a college first year class are having the following attributes Name of the class (BCA, BCom, BSc), Name of the staff No of the students in the class, Array of students in the class
9. Define a class called first year with above attributes and define a suitable constructor. Also write a method called best Student () which process a first-year object and return the student with the highest total mark. In the main method define a first-year object and find the best student of this class
10. Program to define a class called employee with the name and date of appointment. Create ten employee objects as an array and sort them as per their date of appointment. ie, print them as per their seniority.
11. Create a package 'student. Fulltime. BCA 'in your current working directory
a. Create a default class student in the above package with the following attributes: Name, age, sex.
b. Have methods for storing as well as displaying

PART B: Exception Handling \& GUI Programming

1. Program to catch Negative Array Size Exception. This exception is caused when thearray is initialized to negative values.
2. Program to handle Null Pointer Exception and use the "finally" method to display a message to the user.
3. Program which create and displays a message on the window
4. Program to draw several shapes in the created window
5. Program to create an applet and draw grid lines
6. Program which creates a frame with two buttons father and mother. When we click the father button the name of the father, his age and designation must appear. When we click mother similar details of mother also appear.
7. Create a frame which displays your personal details with respect to a button click
8. Create a simple applet which reveals the personal information of yours.
9. Program to move different shapes according to the arrow key pressed.
10. Program to create a window when we press M or m the window displays Good Morning, A or a the window displays Good After Noon E or e the window displays Good Evening, N or n the window displays Good Night
11. Demonstrate the various mouse handling events using suitable example.
12. Program to create menu bar and pull-down menus.

Note: Student has to execute a minimum of 10 programs in each part to complete the Lab course

Evaluation Scheme for Lab Examination

Assessment Criteria	Marks	
Program - 1 from Part A	Flowchart / Algorithm	02
	Writing the Program	04
	Execution and Formatting	04
Program -2 from Part B	Flowchart/Algorithm	02
	Writing the Program	04
	Execution and Formatting	04
Viva Voce based on C Programming	02	
Practical Record	03	
Total		

Course Code: CAC06	Course Title: Discrete Mathematical Structures
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02 Hours

Course Outcomes (COs):

After completing this course satisfactorily, a student will be able to:

- To understand the basic concepts of Mathematical reasoning, set and functions.
- To understand various counting techniques and principle of inclusion and exclusions.
- Understand the concepts of various types of relations, partial ordering and
- equivalence relations.
- Apply the concepts of generating functions to solve the recurrence relations.
- Familiarize the fundamental concepts of graph theory and shortest path algorithm

Course Content

Content	Hours
Unit-1	
The Foundations: Logic and proofs: Propositional Logic, Applications of Propositional Logic, Propositional Equivalences, Predicates and Quantifiers,	
Nested Quantifiers, Rules of Inference, Introduction to Proofs, Proof Methods	
and Strategy.	14
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices: Sets, set operations, Functions, Sequences and Summations, matrices.	
Counting: Basics of counting, Pigeonhole principle, Permutation and combination, Binomial Coefficient and Combination, Generating Permutation and Combination.	
Unit-2	
Advanced Counting Techniques: Applications of Recurrence Relations, Solving Linear Recurrence, Relations, Divide and Conquer Algorithms and	
Recurrence Relations, Generating functions, Inclusion-Exclusion, Applications of Inclusion-exclusion	14
Induction and Recursion: Mathematical Induction, Strong Induction and Well-	

Unit-3	
Relation: Properties of relation, Composition of relation, Closer operation on relation, Equivalence relation and partition. Operation on relation, Representing relation.	14
Graphs: Graphs and Graph models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and	
Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring.	

Text Book:

1. Discrete Mathematics and Its Applications, Kenneth H. Rosen: Seventh Edition, 2012.

References:

2. Discrete Mathematical Structure, Bernard Kolman, Robert C, Busby, Sharon Ross, 2003.
3. Graph Theory with Applications to Engg and Comp. Sci: Narsingh Deo-PHI 1986.
4. Discrete and Combinatorial Mathematics Ralph P. Grimaldi, B. V. Ramatta, Pearson, Education, 5 Edition.
5. Discrete Mathematical Structures, Trembley and Manohar.

Note: The syllabi of the courses of remaining semesters shall be framed in subsequent BoS meetings.

Annexure-BCA Scheme

NEP 2020 CURRICULUM

Bachelor of Computer Applications (BCA)

The objectives of the BCA Program

1. The primary objective of this program is to provide a foundation of computing principles and business practices for effectively using/managing information systems and enterprise software
2. It helps students analyze the requirements for system development and exposes students to business software and information systems
3. This course provides students with options to specialize in legacy application software, system software or mobile applications
4. To produce outstanding IT professionals who can apply the theoretical knowledge into practice in the real world and develop standalone live projects themselves
5. To provide opportunity for the study of modern methods of information processing and its applications.
6. To develop among students the programming techniques and the problemsolving skills through programming
7. To prepare students who wish to go on to further studies in computer science and related subjects.
8. To acquaint students to Work effectively with a range of current, standard, Office Productivity software applications

Program Outcomes: BCA (3 Years) Degree

1. Discipline knowledge: Acquiring knowledge on basics of Computer Science and ability to apply to design principles in the development of solutions for problems of varying complexity
2. Problem Solving: Improved reasoning with strong mathematical ability to Identify, formulate and analyze problems related to computer science and exhibiting a sound knowledge on data structures and algorithms.
3. Design and Development of Solutions: Ability to design and development of algorithmic solutions to real world problems and acquiring a minimum knowledge on statistics and optimization problems. Establishing excellent skills in applying various design strategies for solving complex problems.
4. Programming a computer: Exhibiting strong skills required to program a computer for various issues and problems of day-to-day applications with thorough knowledge on programming languages of various levels.
5. Application Systems Knowledge: Possessing a sound knowledge on computer application software and ability to design and develop app for applicative problems.
6. Modern Tool Usage: Identify, select and use a modern scientific and IT tool or technique for modeling, prediction, data analysis and solving problems in the area of Computer Science and making them mobile based application software.
7. Communication: Must have a reasonably good communication knowledge both in oral and writing.
8. Project Management: Practicing of existing projects and becoming independent to launch own project by identifying a gap in solutions.
9. Ethics on Profession, Environment and Society: Exhibiting professional ethics to maintain the integrality in a working environment and also have concern on societal impacts due to computer-based solutions for problems.
10. Lifelong Learning: Should become an independent learner. So, learn to learn ability.
11. Motivation to take up Higher Studies: Inspiration to continue educations towards advanced studies on Computer Science.

Additional Program Outcomes: BCA Degree (Hons)

The Bachelor of Computer Application (BCA (Hons)) program enables students to attain following additional attributes besides the afore-mentioned attributes, by the time of graduation:

1. Apply standard Software Engineering practices and strategies in real -time software project development
2. Design and develop computer programs/computer -based systems in the areas related to AI, algorithms, networking, web design, cloud computing, IoT and data analytics.
3. Acquaint with the contemporary trends in industrial/research settings and thereby innovate novel solutions to existing problems
4. The ability to apply the knowledge and understanding noted above to the analysis of a given information handling problem.
5. The ability to work independently on a substantial software project and as an effective team member.

Curriculum for BCA

Sem	Core Courses	Hour / Week		DS Elective Courses	Hous/ Week
		Theory	Lab		
1	i. Fundamentals of Computers ii. Programming in C iii. Mathematical Foundation/ Accountancy iv. LAB: Information Technology v. LAB: C Programming	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	4 4		
2	i. Discrete Mathematical Structures ii. Data Structures using C iii. Object Oriented Concepts using JAVA iv. LAB: Data Structure v. LAB: JAVA Lab	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	4 4		
3	i. Data Base Management Systems ii. C\# and DOT NET Framework iii. Computer Communication and Networks iv. LAB: DBMS v. LAB: C\# and DOT NET Framework	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	4 4		
4	i. Python Programming ii. Computer Multimedia and Animation iii. Operating Systems Concepts iv. LAB: Multimedia and Animation v. LAB: Python programming	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		
5	i. Internet Technologies ii. Statistical Computing and R Programming iii. Software Engineering iv. LAB: R Programming v. LAB: JAVA Script, HTML and CSS vi. Vocational 1	3 3 3 3	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	(a) Cyber Law and Cyber Security (b) Cloud Computing (c) Business Intelligence	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$
6	i. Artificial Intelligence and Applications ii. PHP and MySQL iii. LAB: PHP and MySQL iv. PROJECT: v. Vocational 2	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ 12 \end{gathered}$	(a) Fundamentals of Data Science (b) Mobile Application Development (c) Embedded Systems	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$
7	i. Analysis and Design of Algorithms ii. Data Mining and Knowledge Management iii. LAB: Algorithms iv. LAB: Data Mining and Knowledge Management v. Vocational 3	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	(a) Data Compression (b) IoT (c) Data Analytics	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$
8	i. Automata Theory and Compiler Design ii. Cryptography and Network Security iii. Compiler Lab iv. LAB: Project v. Vocational 4	3 3 3	$\begin{gathered} 4 \\ 12 \end{gathered}$	(a) Open-Source Programming (b) Storage Area Networks (c) Pattern Recognition (a) Machine Learning	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$

TABLE I: COURSE STRUCTURE FOR BCA.

Semester	Course Code	Title of the Paper	Credit	Total Credit of $0 E$, Languages, CAE, Voc, AECC, SEC	Total Credit
I	CAC01	Fundamentals of Computers	3	13	26
	CAC02	Programming in C	3		
	CAC03(a)/(b)	Mathematical Foundation/ Accountancy	3		
	CAC01P	LAB: Information Technology	2		
	CAC02P	LAB: C Programming	2		
II	CAC04	Data Structures using C	3	13	26
	CAC05	Object Oriented Concepts using JAVA	3		
	CAC06	Discrete Mathematical Structures	3		
	CAC04 P	LAB: Data Structure	2		
	CAC05 P	LAB: JAVA	2		
III	CAC07	Data Base Management Systems	3	13	26
	CAC08	C\# and DOT NET Framework	3		
	CAC09	Computer Communication and Networks	3		
	CAC07P	LAB: DBMS	2		
	CAC08P	LAB: C\# and DOT NET Framework	2		
IV	CAC10	Python Programming	3	13	26
	CAC11	Computer Multimedia and Animation	3		
	CAC12	Operating System Concepts	3		
	CAC10P	LAB: Python programming	2		
	CAC11P	LAB: Multimedia and Animation	2		
V	CAC13	Internet Technologies	3	10	23
	CAC14	Statistical Computing and R Programming	3		
	CAC15	Software Engineering	3		
	CAC13P	LAB: JAVA Script, HTML and CSS	2		
	CAC14P	LAB: R Programming	2		
VI	CAC16	PHP and MySQL	3	10	23
	CAC17	Artificial Intelligence and Applications	3		
	CAC16P	LAB: PHP and MySQL	2		
	CA-P1	Project Work	5		
VII	CAC18	Analysis and Design of Algorithms	3	11	21
	CAC19	Data Mining and Knowledge Management	3		
	CAC18P	LAB: Algorithms	2		
	CAC19P	LAB: Data Mining	2		
	CAI01	Internship	2		
VIII	CAC20	Automata Theory and Compiler Design	3	6	20
	CAC21	Cryptography and Network Security	3		
	CAC20P	LAB: Compiler Lab	2		
	CAP02	Project Work	6		

TABLE II: CS COURSE DETAILS FOR BCA

Course-			
Type	Course Code as referred above	Compulsory/ Elective	List of compulsory courses and list of option of elective courses. (A suggestive list)
CA	CAC01, CAC02, CAC03(a)/(b), CAC04, CAC05, CAC06, CAC07, CAC08, CAC09, CAC10, CAC11, CAC12, CAC13, CAC14,	Compulsory	
		As Mentioned in Table I	
	CAC20, CAC21		

Computer Application Core Courses (CA C) for BCA (Hons)

Sl. No	Course Code	Title of the Paper
1	CAC01	Fundamentals of Computers
2	CAC02	Programming in C
3	CAC03 (a)/(b)	Mathematical Foundation/ Accountancy
4	CAC04	Discrete Mathematical Structures
5	CAC05	Object Oriented Concepts using JAVA
6	CAC06	Data Structures using C
7	CAC07	Data Base Management Systems
8	CAC08	C\# and D0T NET Framework
9	CAC09	Computer Communication and Networks
10	CAC10	Python Programming
11	CAC11	Computer Multimedia and Animation
12	CAC12	Operating System Concepts
13	CAC13	Internet Technologies
14	CAC14	Statistical Computing and R Programming
15	CAC15	Software Engineering
16	CAC16	PHP and MySQL
17	CAC17	Artificial Intelligence and Applications
18	CAC18	Analysis and Design of Algorithms
19	CAC19	Data Mining and Knowledge Management
20	CAC20	Automata Theory and Compiler Design
21	CAC21	Cryptography and Network Security

Computer Application Electives (CA E) for BCA (Hons)

Sl. No	Computer Application Electives (CA E)
1	Business Intelligence
2	Cyber Law and Cyber Security
3	Data Analytics
4	Data Compression
5	Embedded Systems
6	Fundamentals of Data Science
7	Internet of Things (IoT)
8	Machine Learning
9	Mobile Application Development
10	Open-source Programming
11	Pattern Recognition
12	Storage Area Networks

Vocational Electives

Sl. No	Vocational Electives
1	DTP, CAD and Multimedia
2	Hardware and Server Maintenance
3	Web Content Management Systems
4	Computer Networking
5	Health Care Technologies
6	Digital Marketing
7	Office Automation

UNIVERSITY OF MYSORE

Question Paper Pattern (NEP 2020 Scheme)
Programme: Bachelor of Computer Applications (BCA)
Time Duration: 2 Hours
Max. Marks: 60

Answer the following questions. Each question carries 15 Marks.
$(3 \times 15=45)$

Unit-1			
1. a)			
b)			
c)			
d) OR			
e)			
f)			
2. a)			
b)			
c) ${ }^{\text {c }}$			
OR			
d)			
e)			
f)			
(1) Unit-3			
3. a)			
b)			
c)			
d) OR			
d)			
e)			
f)			
4. Answer any THREE questions from the following. Questions should be asked from each Unit. $(3 \times 5=15)$			
	a)		
	b)		
	c)		
	d)		
	e)		

Note: It is hereby informed that the question paper setter need not mention the Unit Number in the question paper. It is only for the information. Also, the number of sub-questions (a, b, c) can be decided by the paper setter according to the marks allotted to the question.

